July 2000

Clear Trust
SecureControl

Developer’s
Guide

Version 4.5

ClearTrust SecureControl, Release 4.5
Copyright O Securant Technologies, Inc. 2000
All Rights Reserved

This software/documentation contains proprietary information of Securant Technologies, Inc.; it is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Securant T'echnologies, Inc. does not warrant that this
document is error-free.

Securant Technologies, Inc., One Embarcadero Center, Suite 500, San Francisco, CA 94111

This product includes cryptographic software written by Eric Young (eav@cryptsoft.com) and Tim Hudson
(tth@gcryptsoft.com).

Securant, the Securant logo, and ClearT'rust are registered trademarks of Securant T'echnologies, Tnc. All other
products or company names are used for identification purposes only, and may be trademarks of their respective
owners.

Copyright (C) 1997 Eric Young (eay@cryptsoft.com)
All rights reserved.

"T'his package is an SSI. implementation written by Fric Young (eay@cryptsoft.com). The implementation was
written so as to conform to Netscape’s SSL. This library is free for commercial and non-commercial use as long as
the following conditions are adhered to. The following conditions apply to all code found in this distribution, be it
the RC4, RSA, lhash, DES, etc., code, not just the SSL code. The SSL documentation included with this distribution
is covered by the same copyright terms except that the holder is 'Tim Hudson (tjh@cryptsoft.com). Please note that
MD2, MD5 and IDEA are publicly available standards that contain sample implementations, I have re-coded them
in my own way but there is nothing special about those implementations. The DES library is another mater.

Copyright remains Fric Young's, and as such any copyright notices in the code are not to be removed. If this package
is used in a product, Eric Young should be given attribution as the author of the parts of the library used.

This can be in the form of a textual message at program startup or in documentation (online or textual) provided
with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistribution of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment:
"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).” The word
‘cryptographic’ can be left out if the routines from the Library being used are not cryptographic related.

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you
must include an acknowledgment: "This product includes software written by 'Tim Hudson (tjh@cryptsoft.com).”

ERIC YOUNG AS IS AND ANY EXPRESS OR PROVIDE IMPLIED WARRANTTES, INCLUDING, THIS
SOFTWARE IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTTICULLAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTTTUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN TF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

T'he license and distribution terms for any publicly available version or derivative of this code cannot be changed. T.e.
this code cannot simply be copied and put under another distribution license [including the GNU Public License.]

The reason behind this being stated in this direct manner is past experience in code simply being copied and the
attribution removed from it and then being distributed as part of other packages. 'This implementation was a non-
trivial and unpaid effort.

Year 2000 Compliance Statement

Securant is committed to producing the highest quality software products and services. We recognize
the issues and potential problems associated with the storage and calculations of dates with two digit
year fields (Year 2000 problem). All dates used within our products utilize a standard four digit year or
system specific representation.

When installed and implemented in accordance with our current written specifications, ClearTrust
meets or exceeds the following rigorous requirements:

(i) records, stores, processes, calculates, transmits, displays, and presents calendar dates on or after (and,
if applicable, spans of time including) January 1, 2000.

(ii) the use of dates before, on or after January 1, 2000 will not adversely affect performance with respect
to date-dependent data, computations, output, or otherfunctions.

(i) will not abnormally end or provide invalid or incorrect results as a result of date-dependent data;
and

(iv) accurately recognize, manage, accommodate, and manipulate date-dependent data including leap
years.

Chapter 1
Introduction

One key advantage of ClearTrust SecureControl as a security system isits
flexibility and extensibility. Securant ClearTrust SecureControl exposestwo
APIs (application programming interfaces) that can be used by third-party

or

other devel opers:

The Clear Trust SecureControl API enables you to implement custom
functionality—usually in the area of security policy administration
(batch importing of users from a proprietary directory or database, for
example)—into the back-end ClearTrust servers (Authorizer, Dispatcher,
Entitlements; see “Using the ClearTrust SecureControl API” elsewhere
in this guide);

The Clear Trust Plug-in API enables you to extend the functionality of
the ClearTrust SecureControl Plug-in to meet the needs of your specific
security environment. Specifically, you can extend the ClearTrust
SecureControl Web Server Plug-in—using the Plug-in AP to create your
own Web Server Plug-in Extension, or PIX—to integrate Web Server
authentication with third-party or custom authenti cation mechanisms not
directly supported by the core ClearTrust product.

This Developer’s Guide provides information about these topics.

10

Chapter 1

Chapter 2
Using the ClearTrust SecureControl API

The ClearTrust SecureControl API enables application developersto
implement custom functionality—usually in the area of security policy
administration (batch importing of users from a proprietary directory or
database, for example)—into the back-end ClearTrust servers. This chapter
provides an overview of the API functions with information about syntax
and usage. The chapter includes the following sections:

ClearTrust ClearTrust SecureControl APl Overview

API Object Relationships

Using the ClearTrust SecureControl API Efficiently

ClearTrust SecureControl Object Definitions

ClearTrust SecureControl Functions: Administrative and Runtime
ClearTrust SecureControl Object Functions

Relationships and Associations

ClearTrust SecureControl APl Sample Code and Examples and
Examples

Linking with the ClearTrust SecureControl C AP
Using the ClearTrust SecureControl APl Across a Firewall

ClearTrust SecureControl API Overview

The primary advantage of ClearTrust SecureControl as a security systemis
initsflexibility and extensibility. ClearTrust SecureControl provides a
powerful turn-key solution for securing proprietary applications on Web
Servers.

12

Chapter 2

To facilitate the development of these applications, ClearTrust
SecureControl provides both a Javaand C API. The ClearTrust
SecureControl API uses the same administrative security model as
ClearTrust SecureControl Manager, limiting the scope of the functionality
provided by a ClearTrust SecureControl API-enabled Application.
Additionally, the ClearTrust SecureControl APl simplifies auditing and
problem detection through the use of server logs. For more details about the
administrative security model and server logs, refer to the Clear Trust
SecureControl Policy Administration Guide.

The ClearTrust SecureControl API provides you with many areas of
functionality, some of which are discussed in the following subsections.

Batch Loading of Users

Entering new user information into the ClearTrust SecureControl GUI, one
user at atime, can be time-consuming and inefficient, especially for large
organizations. Using the ClearTrust SecureControl API, you can write an
administrative batch-entry application to filter relevant user information
from an existing database and drops it directly into ClearTrust
SecureControl Entitlements database. The task of populating ClearTrust
SecureControl’s database is thereby reduced from many hours at the
keyboard to a single invocation of a custom Application.

NOTE: Adding users programmatically may adverseley affect the Entitlements Server
or API Server performance because of index setting. For large data set—over 100,000
users, for example—Securant recommends that you turn off indexing of the
Entitlements database. Set the securecontrol.db.table.indexed parameter (in the
SecureControl Default.conf file) to ‘no.’ See the Installation and Configuration Guide for
more information about the Default.conf file.

Registration Tool

Some organizations may wish to give users the ability to enter or change
their own personal information. The ClearTrust SecureControl API letsyou
write an application to modify the ClearTrust SecureControl Entitlements
database. Such an applicationisideal for environmentswith changing work
conditions or high turnover.

User Management Tool

It's not always practical or expedient to change User Properties manually,
one at atime—for example, when an entire division or business unit
changes location. Fortunately, you can use the ClearTrust SecureControl
API to create an application that filters and matches Usersin the ClearTrust
SecureControl database with new information from another source, and
editstheinformation to reflect the changes. With this option you can reduce
hours of repetitive data entry to afew application functions.

Application Filters

If your organization has GUI-driven applicationstailored to unique business
processes, you want to limit the available functions to specific Users. The
ClearTrust SecureControl API alowsyoutofilter the Application Functions
available to a User based upon privilege information from the ClearTrust
SecureControl database.

API Object Relationships

The ClearTrust SecureControl API givesyou access to objects and their
relationships. Objects are categorized as either container objects or non-
container objects, and relate to other objects with a contains, contained-in,
or associated-with relationship. Container objects are comprised of
container or non-container objects, making theirs a contains relationships.
Non-container objects are comprised only of their own defining properties
(object id, name, and description) and are either contained-in or associated-
with other objects.

Containment Relationships

Container objects can also have contained-in or associated-with
relationships. While the contains and contained-in relationships have a
fixed meaning, the associated-with relationship varies with the type of
associated objects.

For example, the Group object is a container object comprised of User
objects, but it can also be contained in a Realm object. The Group object
may also be associated with an Application object. Thisassociation between
the Group object and Application object definesthe Group’s accessibility to
the Application. The association defines the relationship between the
Application and any object contained in the Group.

Using the ClearTrust SecureControl API 13

14

Basic Entitlements

A Basic Entitlement specifically grants or denies a User permission to
access an Application. Basic Entitlements can be granted to Users, Groups,
or Realms. If granted to Groups or Realms, Basic Entitlements affect all the
Usersin those entities. Basic Entitlements have a distinct hierarchy; an
entitlement granted or denied at the User level supersedes an opposite
entitlement at the Group or Realm level. Likewise, an entitlement granted or
denied at the Group level supersedes an opposite entitlement at the Realm
level.

For example, if Realm A isdenied accessto Application X, al the Usersin
all the Groupsin that Realm are denied access. But if Group B, amember of
Realm A, isgranted access, all Usersin Group B are granted access. If User
C, amember of Group B, isgranted accessto Application X, thisoverrides
adenied entitlement at the Group level.

Multi-threaded Programming

Chapter 2

The SecureControl C API supports connections from multi-threaded
programs, such as Microsoft Transaction Server, by means of the
CT_Context set of functions. If you have a single threaded application, use
theoriginal ct_ set of functions. However, if you will be devel oping amulti-
threaded application, use the ctxt_ set of functions because it providesmore
control to enable multiple concurrent client connections. Both arelisted in
this section.

For example, there are two functions for querying what applications a user
has permission to access: ctxt_get_apps for_user() and
ct_get apps for_user(). The context-enabled functions take all the same
arguments as the non-context-enabled versions, except that each context-
enabled function (denoted by the "ctxt_" in its function name) additionally
takes ct_context asitsfirst argument, to enable the API Server to track the
client connections. (The original C-API uses a default context that will not
conflict with any of the contexts that are exposed as CT_Contexts.)

Additionally, severa return codes apply to the context-oriented function
calsonly, specifically:

RC_| NVALI D_CONTEXT
RC_ALREADY_CONNECTED

RC_NOT_CONNECTED
RC_ALREADY_| NI TI ALI ZED

The number of concurrent connections that can be managed using the
context-enabled function callsis quite large-2"31 - 1.

Developers working in the Windows NT environment can use the dynamic
link library (ctapi_nt.dll) and its associated static library (ctapi_nt.lib), for
example, to create an application that works with Microsoft Transaction
Server. Developers working in non-Windows environments can use the
ctapi.lib. Thesefilesarelocated in the API subdirectory after installation of
the ClearTrust SecureControl product.

Using the ClearTrust SecureControl API Efficiently

When you are devel oping an application with the ClearTrust SecureControl
API, you can do the following to increase performance:

* Connect Only Once

* Minimize the Number of API Calls

» Usethe User and UserProperty Functions

The following subsections describe these strategiesin further detail.

Connect Only Once

The ClearTrust SecureControl API uses a persistent connection to the
server; once you connect to the APl Server you need not setup the
connection again until the connection islost. The APl Server enforces
administrative security by ensuring that an API Client cannot be used to
change the ClearTrust SecureControl database maliciously. Because the
connection involves some overhead cost, it is more efficient to connect just
once rather than connecting every time you wish to modify the database.

Minimize the Number of API Calls

Every APl call made involves network communication. To perform a
sequence of API calls, first decideif the number of API calls can be reduced
to just afew. For instance, to retrieve agroup of objects, it ismore efficient
to use the get ByRange O get ByNares function than to retrieve each object
individually.

Using the ClearTrust SecureControl API 15

16

Chapter 2

INCORRECT

The following example shows an inefficient code for displaying the names
of agroup of Users. The problem with this code is tht using the .size()
function within the FOR loop causes a remote command to occur on the
server, which will be very slow:

| SparseData theUsers = nyServerProxy. get Users();

for (i =0; i < theUsers.size(); i++)

{

/'l Each get Byl ndex call cause a renote conmand on t he server,
| User aUser = (IUser) theUsers. getByl ndex(i);
Systemout.println(“User[“+ i + “] = “+aUser. get Nane());

}

CORRECT

The following example shows the correct way to display the names of a
group of Users. This code acquires al usersinjust two function calls, so it
isvery efficient. An array isreturned, and then the length of thearray isused
to drivethe counter for theloop. (Alwayswork off the length of the returned
array; sinceit’s possible to receive fewer objects than requested.)
Referencesto User data are then madeto array, whichisin local storage, so
thisis much fastert than retrieving data from the server.

| SparseData theUsers = nyServer Proxy. get Users();

int numXUsers = theUsers. size();

| APl Cbj ect [] userArray = theUsers. get ByRange(0, nunCFf Users);
for (i =0; i <userArray.length; i++)

{

| User aUser = (lUser) userArray[i];
Systemout.println(“User[“+ i + “] = “+aUser.get Nanme());

}

Use the User and UserProperty Functions

ToretrieveaUser and all of itsproperties, usetheget _user _and_properti es
function in C and the get User AndProperti es cal in Java. Thisis more
efficient than retrieving a User and each of its properties one at atime.

ClearTrust SecureControl Object Definitions

The object definitions define the various attributes of an object. Although
objectsmay haverelational attributeswith other objects, these attributesare
not defined within their structures.

CT_Admin Structure

A CT_Admin structure represents a ClearTrust SecureControl
Administrator. A ClearTrust SecureControl Administrator is associated
with a User. The association defines a User’s administrative capabilities.

Syntax
typedef struct {

int id; Reference for the API layer - do not modify!
char *name; Name of the Administrator, used for object reference
char * description; Textual description of the Administrator

} CT_Admin;

CT_AdminGroup Structure

A CT_AdminGroup structure represents an Administrative Group. An
Administrative Groupisacontainer of CT_Users, CT_Groups, CT_Realms,
WebApplications, and CT_User Properties. The Administrative Group
defines which Administrators own (modify) a set of objects.

All Administrators contained within an Administrative Group have
ownership of all objects (User, Groups, and so on) within an Administrative
Group.

A CT_AdminGroup can be associated with any number of Administrator
structures. Each of the Administrator structures defines a set of
administrative functions.

Using the ClearTrust SecureControl API 17

18

An Administrator is also associated with a User. This set of relationships
gives a specific User a set of administrative duties to perform, and a set of
objects to administer or own.

NOTE: The API only gives access to the AdminGroup’s descriptive information and it
contains relationships. The API will not allow you to create or delete an AdminGroup
object, nor will it allow yo to set or delete an AdminGroup’s associated-with relationship
to an Administrator. To perform these functions, you must use the ClearTrust
SecureControl GUI.

Syntax

typedef struct {

int id; Reference for the API layer - do not modify!
char *name; Name of the Administrative Group

char * description; Textual description of the AdminGroup

char * password policy;Name of the Password Policy associated with this
Administrative Group.

CT_BOOLEAN def aul t Pri vat e;If TRUE, Users created in this Administrative
Group the GUI are private or public be defaullt.

CT_BOOLEAN f or ceExpi ry;If TRUE, Users created in this Administrative
Group have expired passwords on creation. On first login, the Users will be
required to change their password.

} CT_AdminGroup;

CT_Application Structure

A CT_Application structurerepresentsacontainer of URLs. An Application
Is associated with a User, Group, or Realm to define the Application’s
accessibility.

Note: The Application structure does not describe the Application’s associated-
with relationships. The Application structure contains only descriptive
information.

Syntax

Chapter 2

typdef struct {

int id; Reference for the API layer - do not modify!
char *nane; Name of the Application, used for obj reference
and

display label on the gui
char *versi on; Version of the Application
char *description; Textual description of the Application

CT_BOOLEAN ct _publ i c; If TRUE, the object is modifiable by any
Administrator.

} CT_Application;

CT_ApplicationFunction Structure
A CT_ApplicationFunction structure represents a function that can be
performed on a given application.

Syntax
typdef struct {

int id; Reference for the API layer - do not modify!

char *name; Name of the function, used for obj reference and display
label on the gui

char *description; Textual description of the function

CT_BOOLEAN filter; TRUE alows access when two Smart Rules conflict.

FALSE
denies access when two Smart Rules conflict.

} CT_ApplicationFunction;

Using the ClearTrust SecureControl API

CT_ApplicationURL

A CT_ApplicationURL structure represents a URL contained in an
Application.

NOTE: The ApplicationURL structure does not describe the ApplicationURL’s
associated-with relationships. The Application structure contains only descriptive
information.

Syntax
typedef struct {

int id; Reference for the API layer - do not modify!

int app_id; Idofthe URL's Web App

int websrvr_id; |dof the URL's Web Server

char *description; Textual description of the ApplicationURL

char *uri; Theaccessiblefile. Note: This does not include the protocol
(e.g. http*) or the host name

} CT_ApplicationURL;

CT_ExplicitEntitlement Structure

A CT_ExplicitEntitlement definesa CT_User, CT_Group, or CT_Realm’s
accessibility toaCT_Application.

NOTE: In order to create a Basic Entitlement, you must specify its Entity id and its
Application id.

Syntax
typedef struct {

int id; Reference for the API layer - do not modify!
CT_BOOLEAN accessi bl e; Defines whether the Application is accessible

} CT_ExplicitEntitlement;

20 Chapter 2

CT_EntityHdr Structure

The CT_Entity Header contains common attributesfor CT_Users,
CT_Groups, and CT_Realms.

Syntax
typedef struct {
int id; Referencefor the API layer - do not modify!

char *nanme The name of the entity

CT_BOOLEAN ct _publ i ¢; If an entity is modifiable by any Administrator
} CT_EntityHdr;

CT_Group Structure
A CT_Group structure represents a group of Users.

Note: The CT_Group structure does not describe the relationship between the
Group and its Users. The Group structure contains only descriptive information
of the Group object.

Syntax
typedef struct {
CT_EntityHdr hdr; Common entity information

char *description; Textual description of the group

} Group;

CT_Realm Structure
A CT_Realm structure represents a group of Groups.

Note: The Realm structure does not describe the relationship between the Realm
and its Groups. The Realm structure contains only descriptive information.

Syntax
typedef struct {

CT_EntityHdr hdr; Common entity information

Using the ClearTrust SecureControl API 21

22

Chapter 2

char *description; Textual description of the Realm

} CT_Realm

CT_User Structure

A CT_User structure represents either a ClearTrust SecureControl
Administrator or aUser of a ClearTrust SecureControl-protected system.

Syntax
typedef struct {

CT_EntityHdr hdr; Common entity information
char *firstname; First name of User

char *| ast nanme; Last name of User

char *emai | addr ; Email address of User

CT_BOOLEAN super user ; Iftrue, User isan SecureControl Super
Administrator

char *passwor d; Password - password of the User, used only to set the
password, it isn't set when a User isretrieved from the server

char *dn; Distinguished Name of a User. This attribute is used to
map a SecureControl User to a User in an external
directory

ObjectArrayRef propArray;
Array of User's Properties

} CT_User;

Object Array Reference

If the User was retrieved using the get _user _and_properti es function, the
User structure contains an array of properties. The Object Array Reference
isasfollows:

typedef struct {

vj ect Ref obj _ref; Reference tothe object array

int numof _objs; Number of objectsin the array
} Qbj ect ArrayRef;

typedef struct {

OBJ_TYPE obj _type; The type of object

voi d *obj _pt r; Pointer to an object

} ObjectRef;

The ObjectArrayRef contains an array of ObjectRef structures; the array is
contained inthe obj _ref variable. The num of _obj s variable specifiesthe
number of ObjectRef structures.

The ObjectRef structure contains an object type, obj _t ype, which identifies
the type of object in the ObjectRef structure. The UserProperty array is
referenced by obj _ptr.

CT_UserProperty Structure
A CT_UserProperty structure describes a particular property of a User.

The CT_UserProperty’svalueis self-defining and is used by Smart Rulesto
calculate a User’s accessibility to an Application.

Note: Smart Rules are defined via Clear Trust SecureControl’s GUI and are not
accessible through the ClearTrust SecureControl API.

Syntax
typedef struct {

int user_id; Referencefor the API layer - do not modify!

char *name; Name of UserProperty, used for object reference
USERPROPTYPE type; Definesthe data type of the User Property
USERPROPVALUE val ; Value of the data type

char *description; Textual description of the User Property

Using the ClearTrust SecureControl API 23

} CT_User Property

How to Set User Properties

time_t cur_time = time(NULL);

DATE_TYPE start_date = local ti me(&cur_tine);
DATE TYPE end date = start_date;

CT_User user;

CT_UserProperty user_props {2};

nenset (&user, ‘\0', sizeof (CT_User));
nenset (&user_props, ‘0\', 2 * sizeof (CT_UserProperty));

end_dat e- >t m year ++

user. hdr.name = “ireilly”;

user. hdr.ct_public = TRUE
user.firstname = “lgnagi us”;
user.lastnane = “Reilly”";

user.enailaddr = ireilly@I| evypants.com

user. superuser = FALSE;

user . super Hel pDesk = FALSE
user. password = “password’;
user.dn = NULL;
user.is.locked = FALSE

user.startdate = *start_date;

user. enddate = *end_dat e;

user _props[0].nane = “Enpl oyee Serial #";
| NT_VALUE;

ntval = 612142,
“Social Security #";

STRI NG_VALUE;

user _props[0].type

user _props[0].val.

user _props[1]. nane

user _props[1].type

Chapter 2

user_props[1].val = “123-45-6789";
return_ct _create_user_and properties(&user, 2, &user_props)

How to Retrieve User Properties

CT_User *user;
if (rc ==ct_get _user_and properties(“irielly”, &user))
{

{
CT_UserProperty *user_props = (CT_UserProperty *) user-
>propArray. obj _ref.obj_ptr;

printf(“Enpl oyee Serial # =%l\n",
user _props[0].val.intval);

printf(“Social Security # =%\n",
user _props[1].val.strval);

}

CT_WebServer Structure
A CT_WebServer structure represents a \Web server.

A WebServer defines a URL's location through an associated-with
relationship. Also, the WebServer object represents the location of a
ClearTrust SecureControl authorizer which performsaccessibility checking
against the associated URLSs.

Note: The WebServer structure does not include the WebServer’ s associated-with
relationships. The WebServer structure contains only descriptive information.

Syntax

typedef struct {

int id; Reference for the API layer - do not modify!
char *nane; Name of the WebServeri

char *description; Textual description of the WebServer

Using the ClearTrust SecureControl API 25

26

char *manuf acturer; Manufacturer of the WebServer
char *host nane; Host name of the WebServer
int port; Port number of the WebServer

CT_BOOLEAN ct _public Definesthe CT_WebServer'svisibility to a
SecureControl CT_WebServer.

} CT_WebServer;

SecureControl Functions: Administrative and Runtime

Chapter 2

The ClearTrust SecureControl API includes two types of functions:

* Administrative Functions, which enableyouto programmatically modify
the Entitlements database, and therefore, require the devel oper to logon
with an appropriate ClearTrust Adminitrator’s account name and
password;

* Runtime Functions, which enable you only to query the Entitlements
database settings and status. You don’t need administrative privilegesto
do this; you can simply log on using NULL as the User name and
password and carry out any of the functionsin that category.

Administrative and Runtime functions are described on thefollowing pages.
Both types of functions support connections from multi-threaded programs,
as discussed briefly in the next section.

Administrative Functions

Administrative functionsinteract with the Entitlements Database to modify
the SecureControl data model. This section describes the administrative
functions.

ctxt_connect (and ct_connect)

int ctxt_connect (CT_Context *context, char *srvr_nane, char
*user, char *pw, char *role, char *port, int use_ssl);

The ctxt_connect function calls ctxt_connect_admin internally, with
admin_group set to NULL. (Thect _connect function will be deprecated in
afuturerelease of the APL. It isonly hereto maintain reverse compatibility.)

[nput

context And thisis???

Srvr_name The server’s hostname or ip address

user Name of the Administrator
pw Administrator’s password
role Name of Administrative Role
por t The server's port

NOTE: If the User and password are Null, only the socket is established.
Outputnone

Return Code

RC_X Successfully retrieved the number of objects

RC_| NCORRECT _PWIncorrect Password

RC_0BJ_NOT_FOUNDODbject not found

RC_USER_NOT_DEFI NED User not defined.

RC_NOT_AUTHORI ZED User not authorized to perform the function
RC_TRANSPORT_ERRCR Error attempting to communicate with the server

The default API port is 5601
Syntax

int ct_connect(char *srvr_nane, char *user_nane, char *pw,
char *admi n_nanme, char *port, int use_ssl);

NOTE: To avoid unexpected system behavior, make sure the use_ssl| setting matches
the setting in the Entitlements Server. Refer to the section titled, Authorization Server
Configuration Definitions in Chapter 1 of the Installation and Configuration Guide for
information on configuring the Default.conf file of the Entitlements Server.

Using the ClearTrust SecureControl API

27

28

Chapter 2

ctxt_connect_admin (and ct_connect_admin)

Connectsto the SecureControl API Server. If the admin_user or admin_pw
iISNULL, only the socket is established.

[nput

context Pointer to the CT_Context token.
srvr_name Theserver'shostname or ip address

port API Server’s port

use_ssl A boolean value representing what

adm n_user Name of the Administrative User (optional)
adm n_pw Administrative User’s password (optional)
adm n_r ol e Name of the Administrative Role (optional)
adm n_gr oup Name of the Administrative Group (optional)

Outputnone
Return Code

RC K Successfully retrieved the number of objects
RC_| NCORRECT_PW Incorrect Password

RC_USER_NOT_DEFI NEDUser not defined

RC_NOT_AUTHORI ZED User not authorized to perform the function
RC_MEMORY_ERROR Memory Error

RC_TRANSPORT _ERROCR Error attempting to communicate with the server

Syntax

int ctxt_connect_adm n(CT_Context *context, char *srvr_nang,
char *port, int use_ssl, char *adm n_user, char *adm n_pw,
char *adm n_rol e, char *adnin_group);

int ct_connect_adm n(char *srvr_nane, char *port, int
use_ssl, char *adm n_user, char *admin_pw, char *adm n_rol e,
char *adm n_group);

ctxt_create_entitlement (and ct_create_entitlement)

Thisfunction creates a Basic Entitlement between an Entity (User, Group,
or Realm) and a Web Application.

[nput

obj _type Type of the entity (CT_USER, CT_GROUP, or CT_REALM)
obj ptr Pointer to the entity object

webapp_ptr Pointer to the Web Application

f unc_name_pt r Pointer to the Application Function name, for access, the

name is ACCESS
Output
ent_ptr Pointer to the returned explicit entitlement
Return Code
RC_OK Successfully created entitlement

RC_I NVALI D_TYPESpecified invalid object type
RC_0BJ_NOT_FOUNDODbject not found
RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ctxt_create_entitlenent(CT_Context context, OBJ_TYPE
obj _type, void *obj_ptr, CT_Application *webapp_ptr,
CT ExplicitEntitlement *ent _ptr, char *func_nane);

int ct_create_entitlement(OBJ_TYPE obj _type, void *obj ptr,
CT_Application *webapp_ptr, CT_ExplicitEntitlenent *ent _ptr,
char *func_nane);

Using the ClearTrust SecureControl API

29

30

Chapter 2

ct_create_user_and_properties

Thisfunction createsa User and al of its properties. Thisfunction provides
an efficient way to store anew User and all of its propertiesin one single
call. You must be logged in as a Super User to use this function.

[nput

user_ptr Pointer to a User

array_si ze Number of arrau elements

props_ptr Pointer to an array of User Properties
Output

user_ptr Pointer to a User

This propArray field points to the array of
UserProperties

Return Code
RC_OK Successfully retrieved entitlement
RC_I NVALI D_TYPE Soecified invalid object type

RC_DUPLI CATE_OBJ_ERROR A User with the same name already exists

RC_NOT_AUTHORI ZED User not authorized to perform the function
RC_TRANSPORT_ERROR Error attempting to communicate with the server
Syntax

int ct_create user_and_properties(CT_User *user_ptr, int array_size,
CT_UserProperty *props _ptr);

ctxt_disconnect (and ct_disconnect)

This function disconnects you from the ClearTrust SecureControl API
Server.

I nputnone

Outputnone

Return Code
RC_OK Successfully retrieved the number of objects
RC_NOT_CONNECTEDUSer is not connected

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ctxt_disconnect (CT_Context context);

int ct_disconnect();

ct_flush_cache

This function flushes the Clear Trust SecureControl Authorizer’'s cachesin
order to notify the Authorizer of all changesin the Entitlements Database.

I nputnone

Outputnone

Return Code

RC_OK Cache was flushed

RC_NOT_AUTHORI ZED User not authorized to perform the function

RC_TRANSPORT_ERROR Error attempting to communicate with the server

Syntax
int ct_flush _cache();

ct_force_password_expiration

This function forces the expiration of a specified User’s password. This
forces the User to change hig’her password the next time he/she
authenticates.

[nput

user _nane Pointer to a User’s name or Distinguished Name (DN)

Using the ClearTrust SecureControl API

32

Chapter 2

f or ce_expi r at i onBit indicating whether or not the User’s password will be
forced to expire

Outputnone

Return Code

RC_OK User was found and the password forced expiration was set

RC_0OBJ_NOT_FOUNDUSser not found

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

ct-force-password-expiration (char *user_name);
NOTE: The default password, ch4nge_me is automatically set when you create a new
User through the ClearTrust SecureControl Manager. This password is inactive,
however, if the force_password_expiration parameter is set to TRUE. If this parameter
is NOTset to TRUE, the password is active for the period of time specified in the

password lifetime of the Password Policy associated with the Administrative Group that
created the User.

ctxt_get_entitlement (and ct_get_entitlement)

Thisfunction retrieves aBasic Entitlement between an Entity (User, Group,
or Realm) and a Web Application.

[nput

context CT_Context token

obj _type Type of the entity (USER, GROUP, or REALM)
obj _ptr Pointer to the entity object

webapp_ptr Pointer to the Web Application.

f unc_nanme_pt r Pointer to the Application Function name, for access, the
name is ACCESS

Output

ent_ptr Pointer to the returned basic entitlement

Return Code

RC_OK Successfully retrieved entitlement

RC_I NVALI D_TYPESpecified invalid object type
RC_0BJ_NOT_FOUNDODbject not found

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ctxt_get _entitlenent(CT_Context context, OBJ_TYPE
obj type, void *obj ptr, CT_Application *webapp ptr,
CT _ExplicitEntitl ement **ent _ptr, char *func_nane);

int ct_get_entitlenment(OBJ_TYPE obj type, void *obj ptr,
CT_Application *webapp_ptr, CT_ExplicitEntitlenent
**ent _ptr, char *func_nane);

ct_get _user_and_properties
Thisisaconvenience function for retrieving aUser and all of its properties.

[nput

user_nane Pointer to a User’'s name
Output

user _ptr Pointer to a User

The propArray field points to array of
UserProperties

Return Code
RC_OK Successfully retrieved entitlement
RC_I NVALI D_TYPESpecified invalid object type

RC_0BJ_NOT_FOUNDODbject not found

Using the ClearTrust SecureControl API

33

34

Chapter 2

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ct_get user_and properties(char *user_name, CT_User **user_pitr);

ct_get_user_and_properties_by dn

Thisisaconvenience function for retrieving aUser and all of its properties

by DN (Distinguished Name).

[nput
dn Pointer to a User’ s Distinguished Name
Output
user _ptr Pointer to a User
The propArray field points to the array of UserProperties
Return Code
RC_OX Successfully retrieved entitlement

RC_I NVALI D_TYPESpecified invalid object type
RC_0BJ_NOT_FOUNDODbject not found
RC_NOT_AUTHCRI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax
int ct_get user_and properties by dn(char *dn, CT_User **user_ptr);

ctxt_reset_password (and ct_reset_password)
Thisfunction resets a User’s password.
[nput

context Pointer to CT_Context token

user_nane Pointer to a User’s name
ol d_password Pointer to the User’s old password

new_passwor d Pointer to the User’s new password

Outputnone
Return Code

RC_OX Successfully set the password

RC_I NVALI D_PASSWORDThe new password supplied violated the server’s
password policy

RC_0BJ_NOT_FOUNDODbject not found

RC_NOT_AUTHCRI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax

int ct_reset_password(char *user_name, char *ol d_password,
char *new_password);

int ctxt_reset_ password(CT_Context context, char *user_naneg,
char *ol d_password, char *new password);
Note: You do not need to supply an Administrative name, password, or Role on
the connect statement to use this function. This allows you to write a CGI or
application that does not store the Clear Trust SecureControl Administrator’s 1D
or password. To use this function successfully, you must supply the User’s old
password.

ct_save user_and_properties

Thisfunction saves a User and all of its properties. This provides for an
efficient way of storing aUser and all of its propertiesin one single call. If
the definition for a UserProperty doesn't exist, this call creates anew
definition for the property. You must belogged on asa Super User to usethis
function.

Using the ClearTrust SecureControl API

36

Chapter 2

[nput

user_ptr Pointer to a User

array_size Number of array elements

props_ptr Pointer to an array of User Properties

Outputnone
Return Code

RC_OX Successfully retrieved entitlement
RC_I NVALI D_TYPESpecified invalid object type
RC_0BJ_NOT_FOUNDODbject not found

RC_NOT_AUTHCRI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax

int ct_save user_and_properties(CT_User *user_ptr, int array_size,

CT_UserProperty *props _ptr);

ctxt_set_password (and ct_set_password)
Thisfunction sets a User’s password.

[nput

user_ptr Pointer to a User object

passwor d Pointer to the User’s password
Outputnone

Return Code

RC_OK Successfully set the User’s Password

RC_0BJ_NOT_FOUNDODbject not found

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ctxt_set_password(CT_Context context, char *user_nane,
char *password);

int ct_set_password(CT_User *user_ptr, char *password);

ClearTrust SecureControl Object Functions

This section discusses ClearTrust SecureControl APl functions that
manipul ate the following stand-al one objects:

« CT _REALM

« CT_GROUP

 CT_USER

« CT_USER PROPERTY

« CT_USER PROPERTY DEF

« CT_ADMINISTRATIVE _GROUP
« CT_ADMINISTRATOR

« CT_APPLICATION_URL

 CT WEB_SERVER

« CT_APPLICATION_FUNCTION
« CT_EXPLICIT_ENTITLEMENT

ct_alloc_obj

Thect _alloc_obj function alocatesaloca ClearTrust SecureControl
object. Use thisfunction call instead of allocating storage directly.

Input
obj _type The object type to allocate

obj ptr Pointer to the object to allocate

Valid Object Types

Using the ClearTrust SecureControl API

38

Chapter 2

CT_REALM
CT_GROUP

CT_USER
CT_USER_PROPERTY
CT_ADMINISTRATIVE_GROUP
CT_ADMINISTRATOR
CT_APPLICATION
CT_APPLICATION_URL
CT_WEB_SERVER
CT_EXPLICIT_ENTITLEMENT
CT_APPLICATION_FUNCTION

CT_USER_PROPERTY _DEF

Output

obj ptr Pointer to allocated storage
Return Code

RC_OK Successfully allocated the object

RC_I NVALI D_TYPE Invalid object type

RC_MEMORY_ERRCR Either the client or server is out of memory

Syntax
int ct_alloc_obj(OBJ TYPE obj_type, void **obj_ptr);

ct_create_obj

Thisfunction creates an object of a given object type.

Note: Not all object types can be created. The allowed object types are: Group,
Realm, User, User Property, Application, Web Application, URI, and Web Server.

[nput

obj _type The object type to create

Output

obj ptr Pointer to the new object with itsinitial values

Valid Object Types
CT_USER

CT_GROUP

CT_REALM
CT_USER_PROPERTY
CT_APPLICATION
CT_APPLICATION_URL
CT_WEB_SERVER

CT_USER_PROPERTY _DEF

Output

obj ptr Pointer to the new object
Return Code

RC_OK Successfully created the object

RC_I NVALI D_TYPESpecified invalid object type

Using the ClearTrust SecureControl API

39

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax
int ct_create obj(OBJ TY PE obj_type, void *obj_ptr);

ct_get_num_of_objs

Given the object type, this function returns the number of objectsin the
Entitlement Server database.

[nput

obj _type The object typeto query
Valid Object Types

CT_USER

CT_GROUP

CT_REALM

CT_APPLICATION

CT_ADMINISTRATIVE_GROUP

CT_WEB_SERVER

CT_USER_PROPERTY_DEF

Output

num of _objs Containsthe number of objects for the specified type
Return Code

RC_OK Successfully retrieved the number of objects
RC_I NVALI D_TYPESpecified invalid object type

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

Chapter 2

RC_MEMORY ERROREither the client or server is out of memory

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax
int ct_get num_of objs(OBJ TY PE obj_type, int *num_of _objs);

ct_get_obj by index
Given the object type and object index, this function returns the object.
[nput
obj _type The object type to query
obj _i ndex Index of the object
Valid Object Types
CT_USER
CT_GROUP
CT_REALM
CT_APPLICATION
CT_ADMINISTRATIVE_GROUP
CT_WEB_SERVER

CT_USER_PROPERTY_DEF

Output

obj _ptr Pointer to the requested object
Return Code

RC_OK Successfully retrieved the object

RC_0BJ_NOT_FOUNDODbject not found

Using the ClearTrust SecureControl API 41

42

Chapter 2

RC_I NVALI D_TYPESpecified invalid object type
RC_NOT_AUTHORI ZEDUser not authorized to perform the function
RC_MEMORY ERROREither the client or server is out of memory

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax
int ct_get_obj_by index(OBJ _TYPE obj_type, int obj_index, void
**obj_ptr);
ct_get _obj by name

Given the object type and object name, this function returns the object.
Input

obj _type The object type to query

obj _nane_pt r Pointer to the object name

Valid Object Types

CT_USER

CT_GROUP

CT_REALM

CT_APPLICATION

CT_ADMINISTRATIVE_GROUP

CT_WEB_SERVER

CT_APPLICATION

CT_USER_PROPERTY_DEF

Output

obj ptr Pointer to the requested object

Return Code

RC_OK Successfully retrieved the object
RC_0OBJ_NOT_FOUND Object not found

RC_I NVALI D_TYPE Soecified invalid object type
RC_NOT_AUTHORI ZED User not authorized to perform the function

RC_MEMORY ERROR Either the client or server is out of memory
RC_TRANSPORT_ERROR Error attempting to communicate with the server

Syntax

int ct_get obj_by name(OBJ TY PE obj_type, char *obj_name ptr, void
**obj_ptr);

ct_get objs_by names

Thisfunction returns arange of objects based on an object type and array of
object names.

[nput

obj _type The object type to query
name_array An array of namesto query
num of _names Number of namesin the array

Valid Object Types
CT_USER
CT_GROUP
CT_REALM
CT_APPLICATION

CT_ADMINISTRATIVE_GROUP

Using the ClearTrust SecureControl API

44

Chapter 2

CT_WEB_SERVER
CT_USER_PROPERTY _DEF

Output

array_size Number of array elements

objs_ptr Pointer to an array of objects
Return Code
RC_OK Successfully retrieved the objects

RC_0BJ_NOT_FOUNDODbjects not found

RC_I NVALI D_TYPESpecified invalid object type

RC_NOT_AUTHORI ZEDUser not authorized to perform the function
RC_MEMORY_ERROREither the client or server is out of memory

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ct_get objs by names(OBJ TY PE obj_type, char *name_array([], int

num_of names, int *array_size, void **obj_ptr);

ct_get objs_by range

This function returns a range of objects.

[nput

obj _type The object typeto query
start_i ndex Sart index

end_i ndex End index

Valid Object Types

CT_USER

CT_GROUP
CT_REALM

CT_APPLICATION
CT_ADMINISTRATIVE_GROUP

CT_WEB_SERVER

CT_USER_PROPERTY _DEF

Output

array_si ze Number of array elements

objs_ptr Pointer to an array of objects

Return Code

RC_OK Successfully retrieved the objects
RC_OBJ_NOT_FOUND Objects not found

RC_I NVALI D_TYPE Soecified invalid object type
RC_NOT_AUTHORI ZED User not authorized to perform the function
RC_MEMORY_ERROR Either the client or server is out of memory
RC_TRANSPORT_ERROR Error attempting to communicate with the server
Syntax

int ct_get objs by range(OBJ TY PE obj_type, int start_index, int
end index, int *array_size, void **obj_ptr);

ct_save obj
This function saves an object.

[nput

Using the ClearTrust SecureControl API 45

46

Chapter 2

obj _type The object type to be saved
obj ptr Pointer to the object to save
Valid Object Types

CT_GROUP

CT_REALM

CT_USER

CT_APPLICATION

CT_WEB_SERVER
CT_EXPLICIT_ENTITLEMENT
CT_APPLICATION_FUNCTION
CT_USER_PROPERTY_DEF

CT_USER_PROPERTY

Outputnone

Return Code

RC_OX Successfully saved the object
RC_OBJ_NOT_FOUND Object not found

RC_I NVALI D_TYPE Soecified invalid object type
RC_NOT_AUTHORI ZED User not authorized to perform the function

RC_MEMORY_ERROR Either the client or the server is out of memory

RC_TRANSPORT ERROR Error attempting to communicate with the server

Syntax
int ct_save obj(OBJ TYPE obj_type, void *obj_ptr);

Relationships and Associations
The ClearTrust SecureControl API functionsin this section use
relationships and associations. The following list describes the types of

relationships and associations available via the ClearTrust SecureControl
API:

ADM NGROUP_ADM NS Administrators contained in an AdminGroup
ADM NGROUP_USERS Users contained in an AdminGroup

ADM NGROUP_GROUPS Groups contained in an AdminGroup

ADM NGROUP_REALMS Realms contained in an AdminGroup

ADM NGROUP_VEBAPPS Applications contained in an AdminGroup

ADM NGROUP_WEBSRVRS WebServers contained in an AdminGroup
APP_APPFUNC An Application’s Application Function
APP_EXP_ENTI TLEMENTS An Application's Basic Entitlements
GROUP_USERS Users contained in a Group
GROUP_REALMS Realms that contain a Group
GROUP_EXP_ENTI TLEMENTS A Group's Basic Entitlements

REALM GROUPS Groups contained in a Realm

REALM EXP_ENTI TLEMENTS A Realm's Basic Entitlements
USER_GROUPS Groupsthat contain a User
USER_USERPROPS UserProperties for a User
USER_EXP_ENTI TLEMENTS A User's Basic Entitlements

WEBSERVER_VEBURLS WebURLSs associated with a WebServer

Relational Functions

This section describes the Clear Trust SecureControl relational functions.

Using the ClearTrust SecureControl API 47

CT_GET_NUM_OF _OBJ_RELS

Given the object and the object relation type, this function returns the
number of objects the given object isrelated to for the given type.

[nput
obj _rel _type The object relation type
obj _ptr Pointer to the object to query

Valid Relationship Types
CT_ADMINGROUP_ADMINS
CT_ADMINGROUP_USERS
CT_ADMINGROUP_GROUPS
CT_ADMINGROUP_REALMS
CT_ADMINGROUP_WEBAPPS
CT_ADMINGROUP_WEBSRVRS
CT_APP_APPFUNC
CT_GROUP_USERS
CT_GROUP_REALMS
CT_GROUP_EXP ENTITLEMENTS
CT_REALM_GROUPS
CT_REALM_EXP _ENTITLEMENTS
CT_USER _GROUPS
CT_USER_USERPROPS

CT_USER EXP _ENTITLEMENTS

CT_APP_EXP_ENTITLEMENTS

Chapter 2

CT_APP_WEBURLS
CT_WEBSERVER_WEBURLS

Output

numof _rels Contains the number of objects for the specified
relation type

Return Code

RC_X Successfully retrieved the number of objects
RC_I NVALI D_TYPE Soecified invalid relation type

RC_NOT_AUTHORI ZED User not authorized to perform the function
RC_TRANSPORT ERROR Error attempting to communicate with the server
Syntax

intct_get num_of obj rels(OBJ REL_TYPE obj_rel_type, void *obj_ptr,
int *num_of_rels);

CT_GET_OBJ_BY_REL_INDEX

Giventhe object relationship type, object pointer, and therelationship index,
this function returns the requested object.

[nput

obj _rel _type The object relationship typeto query
fromobj _ptr The“from’ object

rel _i ndex The index into the relationships
Valid Relationship Types
CT_ADMINGROUP_ADMINS
CT_ADMINGROUP_USERS

CT_ADMINGROUP_GROUPS

Using the ClearTrust SecureControl API

49

50

Chapter 2

CT_ADMINGROUP REALMS
CT_ADMINGROUP WEBAPPS
CT_ADMINGROUP_WEBSRVRS
CT_APP_APPFUNC
CT_GROUP_USERS

CT_GROUP REALMS
CT_GROUP_EXP_ENTITLEMENTS
CT_REALM_GROUPS
CT_REALM_EXP_ENTITLEMENTS
CT_USER _GROUPS
CT_USER_USERPROPS
CT_USER EXP_ENTITLEMENTS
CT_APP_EXP ENTITLEMENTS
CT_APP_WEBURLS

CT_WEBSERVER_WEBURLS

Output

obj ptr Pointer to the requested object
Return Code

RC_OK Successfully retrieved the object

RC_0BJ_NOT_FOUNDODbject not found
RC_I NVALI D_TYPESpecified invalid object type
RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ct_get obj_by rel index(OBJ REL_TYPE obj_rel type, void
*from_obj_ptr, int rel_index, void **obj_pitr);

CT_GET_OBJ BY_REL_RANGE

Given the object relationship type, object ptr, and therelationship index, this
function returns the requested object.

[nput

obj _rel _type The object relationship type to query
fromobj ptr The* from” object

rel start Theindex to start from

rel _end Theindex to end

Valid Relationship Types
CT_ADMINGROUP_ADMINS
CT_ADMINGROUP_USERS
CT_ADMINGROUP_GROUPS
CT_ADMINGROUP_REALMS
CT_ADMINGROUP_WEBAPPS
CT_ADMINGROUP_WEBSRVRS
CT_APP_APPFUNC
CT_GROUP_USERS
CT_GROUP_REALMS
CT_GROUP_EXP ENTITLEMENTS

CT_REALM_GROUPS

Using the ClearTrust SecureControl API 51

52

Chapter 2

CT_REALM_EXP_ENTITLEMENTS
CT_USER _GROUPS
CT_USER_USERPROPS
CT_USER EXP_ENTITLEMENTS
CT_APP_EXP ENTITLEMENTS
CT_APP_WEBURLS

CT_WEBSERVER_WEBURLS

Output

array_size Number of objectsisthe returned array
obj ptr Pointer to the returned array of objects
Return Code

RC_OK Successfully retrieved the object
RC_OBJ_NOT_FOUND Object not found

RC_I NVALI D_TYPE Soecified invalid object type

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRCORError attempting to communicate with the server

Syntax

int ct_get obj by rel range(OBJ REL _TYPE obj_rel_type, void
*from_obj_ptr, int rel_start, int rel_end, int *array_size, void **obj_ptr);

CT_GET_OBJ BY_REL_NAME

Given the object relationship type, object ptr, and the name of the related
object, this function returns the related object.

[nput

obj _rel _type The object relationship type to query

fromobj _ptr The“from’ object

rel _obj _name The name of the related object

Valid Relationship Types

CT_ADMINGROUP_ADMINS

CT_ADMINGROUP_USERS

CT_ADMINGROUP_GROUPS

CT_ADMINGROUP_REALMS

CT_ADMINGROUP_WEBAPPS

CT_ADMINGROUP_WEBSRVRS

CT_GROUP_USERS
CT_GROUP REALMS
CT_REALM_GROUPS
CT_USER_GROUPS
CT_USER_USERPROPS
Output

obj ptr

Return Code

RC_OK
RC_OBJ_NOT_FOUND

RC_I NVALI D_TYPE

RC_NOT_AUTHOR! ZED

Pointer to the requested object

Successfully retrieved the object
Object not found
Soecified invalid object type

User not authorized to perform the function

Using the ClearTrust SecureControl API 53

54

Chapter 2

RC_TRANSPORT_ERROR Error attempting to communicate with the server

Syntax

int ct_get obj by rel name(OBJ REL_TYPE obj rel _type, void
*from_obj_ptr, char *rel_obj _name, void **obj_ptr);

CT_GET_OBJS BY_REL_NAMES

Thisfunction returns an array of objects based on an array of object names.

[nput

obj _rel _type The object relationship type to query
fromobj ptr The “ from” object

name_array Array of names

num of _nanes Number of namesin the array

Valid Relationship Types
CT_ADMINGROUP_ADMINS
CT_ADMINGROUP_USERS
CT_ADMINGROUP_GROUPS
CT_ADMINGROUP_REALMS
CT_ADMINGROUP_WEBAPPS
CT_ADMINGROUP_WEBSRVRS
CT_GROUP_USERS
CT_GROUP_REALMS
CT_REALM_GROUPS
CT_USER _GROUPS

CT_USER_USERPROPS

Output

array_size Number of objectsisthe returned array

obj ptr Pointer to the returned array of objects
Return Code
RC_OK Successfully retrieved the object

RC_0BJ_NOT_FOUNDODbject not found
RC_I NVALI D_TYPESpecified invalid object type
RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ct_get objs by rel names(OBJ REL_TYPE obj rel _type, void
*from_obj_ptr, char *name_array[], int num_of names, int *array_size,
void **obj_ptr);

CT_SET_REL

Thisfunction setsarelationship for the specified relationship type between
the two specified objects.

Note: Some object’ s relationships are fixed at the time of the object’s creation.
Thus, ct _set _rel only appliesto a subset of relationships.

[nput

obj _rel _type The object relationship type to set
fromobj _ptr The“from’ object

to_obj _ptr The“to” object

Valid Relationship Types

CT_ADMINGROUP_USERS

Using the ClearTrust SecureControl API

56

Chapter 2

CT_ADMINGROUP_GROUPS
CT_ADMINGROUP REALMS
CT_ADMINGROUP WEBAPPS
CT_ADMINGROUP_WEBSRVRS
CT_GROUP_USERS

CT_GROUP REALMS
CT_REALM_GROUPS

CT_USER _GROUPS

Outputnone
Return Code

RC_OX Successfully set the relationship
RC_0BJ_NOT_FOUNDODbject not found

RC_I NVALI D_TYPESpecified invalid object type

RC_NOT_AUTHCRI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax

int ct_set rel(OBJ REL_TYPE obj_rel_type, void *from_obj_ptr, void
*to_obj_ptr);

CT_DEL_REL

Thefunctionct _del _rel deletesarelationship for the specified relationship
type between the two specified objects.

[nput

obj _rel _type The object relationship type to delete

fromobj _ptr The“from’ object
to_obj _ptr The“to” object
Valid Relationship Types
CT_GROUP_USERS
CT_GROUP_REALMS
CT_REALM_GROUPS
CT_USER_GROUPS
CT_USER _ADMINS

Outputnone
Return Code

RC_OX Successfully set the relationship
RC_0BJ_NOT_FOUNDODbject not found

RC_I NVALI D_TYPESpecified invalid object type

RC_NOT_AUTHCRI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax
int ct_del_rel(int obj_rel_type, void *from_obj_ptr, void *to_obj_ptr);

Runtime Functions
You use runtime functionsto consult or check the Clear Trust SecureControl
database. This section describes runtime commands.

ct_check_access
Thisfunction checks a User’s accessibility to a URI. It only returns TRUE
for avalid user, asin ct_validate user.

Note: You do not need to supply an Administrative name, password, or Role on
the connect statement to use this function.

Using the ClearTrust SecureControl API

58

Chapter 2

[nput
user_nane Pointer to a User’'s name

passwor d Pointer to a User’s password. If the password is Null, no
password checking is done.

web_server namePointer to the URI's WebServer name
uri Pointer to the URI
Output
i s_accessi bl ePointer to a Boolean value:
TRUE - URI is accessible
FALSE - URI isn't accessible
Return Code
RC_X Access successfully determined
RC_0OBJ_NOT_FOUNDUser not found

RC_NO_AUTH_SERVERSNo Authorization Servers were available to process
request

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax

int ct_check access(char *user_name, char * password, char
*web_server name, char *uri, CT_BOOLEAN *is_accessible);

ct_check_function
This function checks a User's accessibility to an Application’s function.
Only returns TRUE for avalid user, asin ct_validate user.

[nput

user _nane Pointer to a User’s name or Distinguished Name

passwor d Pointer to a User’s password. If the password is Null, no
password checking is done.

app_nane Pointer to the name of the Application

func_name Pointer to the name of the Application’s function

Output
i s_accessi bl e Pointer to a Boolean value:
TRUE - User can access the Application’s function

FALSE — User is denied access to the Application’s function

Return Code
RC_X Access successfully determined
RC_0OBJ_NOT_FOUNDUser not found

RC_NO_AUTH_SERVERSNoO Authorization Servers were available to process
request.

RC_TRANSPORT_ERRCRError attempting to communicate with the server.

Syntax

int ct_check_function(char *user_name, char * password, char *app_name,
char *func_name, CT_BOOLEAN *is_accessible);

ctxt_check_password (and ct_check_password)
This function only checks a User’s password. It does not check account
validation.

Note: You do not need to supply an Administrative name, password, or Role on
the connect statement to use this function.

[nput
context

user _nane Pointer to a User's name or Distinguished Name

Using the ClearTrust SecureControl API 59

60

Chapter 2

passwor d Pointer to a User’s password.

Output
is valid Pointer to a Boolean value
TRUE - User is found and password isvalid
FALSE - User isfound and password isinvalid
Return Code
RC_OK Access was deter mined

RC_OBJ_NOT_FOUND User not found
RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_NO_AUTH_SERVERSNoO Authorization Servers were available to process
request.

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax

int ct_check password(char *user_name, char * password, CT_BOOLEAN
*is valid);

ctxt_create_app_func (and ct_create_app_func)

This function creates an Application Function associated with an
Application. An Application Function represents a protected set of
functionality within an Application. This set of functionality can be
protected through the creation of a Basic Entitlement.

[nput
context token for CT_Context
app_ptr Pointer to the Application Function’s Application

app_func_ptr Pointer to the Application Function

Output

app_func_ptr The Application Function’sid will be set

Return Code

RC_OK Successfully created an Application Function
RC_0BJ_NOT_FOUNDODbject not found

RC_NOT_AUTHORI ZEDUser not authorized to perform the function

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax

int ctxt _create_app_func(CT_Context context, CT_Application
*app_ptr, CT_ApplicationFunction *app_func _ptr);

i nt
ct_create_app_func(CT_Application, *app_ptr, CT_ApplicationFun
ction *app_func_ptr);

ctxt_create_app_url (and ct_create_app_url)

Createsan Application URL associated with an Application and WebServer.
An Application URL represents aresource |abeled by a URI and associated
with a particular Application and Web Server.

[nput

app_ptr Ptr to the Application Url’s Application
webserver_ptr ptr to the Application Url’'s Webserver

app_url_ptr ptrto Application Url

Output

app_url_ptr The Application Url'sid, app_id, and websrvr_id will be set
Return code

RC OK Successfully created an Application URL

Using the ClearTrust SecureControl API

62

Chapter 2

RC_OBJ NOT_FOUND - The Application or the WebServer can not be
found.

RC DUPLICATE_OBJ ERROR - AnApplicationURL already existsin the
system.

RC _NOT_AUTHORIZED - User not authorized to perform the function

RC_TRANSPORT_ ERROR - Error attempting to communicate with the
server

Syntax

int ct _create_app_url (CT_Application *app_ptr, CT_WbServer
*webserver _ptr, CT_ApplicationURL *app_url _ptr);

int ctxt_create_app_url (CT_Context context, CT_Application
*app_ptr, CT_WebServer *webserver_ptr, CT_Applicati onURL

*app_url _ptr);

ct_get_apps_for_user
Thisfunction retrieves the corresponding applications for which a user has
'ALLOW’ privileges for an Application Function.

[nput
user_nane Pointer to a User’s name

func_name Pointer to the name of the Application’s Function

Output

array_si ze Number of array elements
apps_ptr Pointer to an array of Applications
Return Code

RC_OK Successfully retrieved the objects

RC_0BJ_NOT_FOUNDODbjects not found

RC_INVALID_TYPESpecified invalid object type

RC_NOT_AUTHORI ZEDUser not authorized to perform the function
RC_MEMORY_ERROREither the client or server is out of memory

RC_TRANSPORT_ERRORError attempting to communicate with the server

Syntax
int ct_get apps for_user (char* user_name, char* func_name, int
*array_size, CT_Application **apps _ptr)

ctxt_validate_user (and ct_validate_user)

Thisfunction validates a User’s account. The user can have an invalid

account for any of the following reasons:

* Invalid username

* Incorrect password for given user

» User’spassword islocked

o User's password is expired

o User's Start Date is after current Authorization Server System Time

» User'sEnd Dateis before current Authorization Server System Time
NOTE: All times are internally computed as GMT to preserve functionality.

[nput

user_namePointer to a User's name or Distinguished Name

passwordPointer to a User's password

NOTE: You do not need to supply an Administrative name, password, or Role on the
connect statement to use this function.

Output
is valid Pointer to a Boolean value:

TRUE - User isfound and password validity was
determined

FALSE - User isfound and password isinvalid
Return Code

Using the ClearTrust SecureControl API

64

RC_OK User isfound
RC_0OBJ_NOT_FOUNDUSser not found

RC_NO_AUTH_SERVERSNoO Authorization Servers were available to process
request.

RC_TRANSPORT_ERRCRError attempting to communicate with the server

Syntax

int ctxt_validate user(CT_Context context, char *user_nane,
char *password, CT_BOOLEAN *is_valid);

int ct_validate_ user(char *user _nanme, char *password, BOOLEAN
*is valid);

ClearTrust SecureControl API Sample Code and Examples

Chapter 2

C Sample Code

You can find asample C applicationindri ver. ¢ whenyouingtal the
SecureControl servers. This application connectsto a ClearTrust
SecureControl server, setsthe Application’s Administrator, createsasingle
User, creates a single Group, puts the User in the Group, and disconnects
from the ClearTrust SecureControl server.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i nclude <string. h>
#include <time.h>

#i ncl ude "ct_commands. h"
/*

*

*This driver is an exanple of how to use the SecureControl -
API. Note *there are a few prerequi stes before successfully
usi ng the APl : The *SecureControl Database has to beinitially
defined with the follow ng *resources:

* 1) There has to be at | east one superuser defined. Thisis
* required for APl connection
* 2) There has to be Administrative Roles defined. This is

* requi red for APl connection

* 3) Al CT_UserPropertyDefinitions have to be pre-defined.
They

* cannot be defined through the API.

* 4) Al WbServers have to be pre-defined. They cannot be
* defined through the API

*/

Java Examples
To usethe Java API, you need to add the following files to the classpath:

<SecCtrl Pat h>\1 nstal | s\ API\ Java\ Cl asses\ SCAPI . j ar
<SecCtrl Pat h>\ O asses\jgl13_1 0.jar

To run the APIDriver example from
<SecCtrl Pat h>\ I nstal | s\ APl \ Java\ Exanpl es, you heedtoadd ‘.’ or
<SecCirl Pat h>\ I nstal | s\ API'\ Java\ Exanpl es to the classpath.

NOTE: For information on the Java API, refer to the Javadoc provided with the
ClearTrust SecureControl installation. The Javadoc is located in the api \ j ava\ doc
directory on the installation disk.

Linking with the ClearTrust SecureControl C API
The ClearTrust SecureControl C APl isastatically linked library.

Library for Unix

Our current C-API has been tested on two platforms, the Solaris 2.5.1
platform and the Windows NT v4.0 SP4 platform. For these platforms, we
have employed the following compilers and their corresponding versions:

Solaris platform: gcc version 2.95.1 (freely available from website
gcc.gnu.org)

Windows NT/95 platform: msdev studio 5.0 (97)

Using the ClearTrust SecureControl API 65

66

Chapter 2

The ClearTrust SecureControl C API library for Unix is! i bet api . a. YOu
must link your code with the following options:

gcc -0 -lctapi -l1socket -Insl -Issl -lcrypto

Library for Windows NT

The ClearTrust SecureControl C API library isthread safe and usesthe NT
multi-threading library; consequently, your code also must be thread safe
and use the multi-threading library.

Compile Options

_Mr

Linker Options (additional libraries)

ctapi.lib libcnt.lib wsock32.lib libeay32.1ib ssleay32.1ib
You must also override the default libraries.

Chapter 3
The ClearTrust Web Server Plug-in API

The ClearTrust SecureControl WebServer Plug-in provides an API that
allows devel opers to extend and customize the functionality of the
ClearTrust SecureControl Plug-in. Unlike the ClearTrust SecureControl
API, the ClearTrust SecureControl Plug-in API does not modify the
ClearTrust SecureControl database, rather it controls the behavior of the
ClearTrust SecureControl Plug-in during the authentication and
authorization processing.

For example, you could extend the functionality of the ClearTrust
SecureControl WebServer Plug-in in the following ways:

» Create an extension directing the Web Server to acusom HTML filefor
different return codes from the ClearTrust SecureControl Authorization
Server.

 Create an extension providing custom logging.
 Create an extension providing custom authentication of Users.

» Create an extension integrating the ClearTrust SecureControl Plug-in
with propriety WebServer Plug-ins or third party Plug-ins.

This chapter providesan overview of the ClearTrust Plug-in API, including
processing flows and logic loops, and provides an overview about how to
Integrate your own custom extension—the ClearTrust Plug-in Extension
(PIX) that you write—into your Web server environment. It includes the
following sections:

» Extending Functions of the ClearTrust Web Server Plug-in
e Compiling and Linking with the ClearTrust SecureControl Plug-in AP
e Custom Authentication Example

® o 0 0 00
o
~

68

» Custom Error Pages Example

Extending Functions of the ClearTrust Web Server Plug-in

Chapter 3

ClearTrust SecureControl Plug-in Extensions are implemented using a call-
back scheme. Much like the call-back mechanismsin the Netscape and I1S
servers, aClearTrust SecureControl Plug-in Extension must register itself to
the Clear Trust SecureControl Plug-in and define the various routinesto call
when processing a URL request. Figure 1-1 illustrates the relationship
among a ClearTrust SecureControl Plug-in Extension, the ClearTrust
SecureControl Plug-in, various Web Servers, and their respective APIs.

(= i
ClearTrust Plug-in Proprietary or
Custom Web Server
Netscape Enterprise Server (NES)
APAPI (Apache API)
ISAPI (Internet Server API)) R
NSAPI (Netscape Server API) Microsoft Internet Information Server (I1S)
a
Apache Web Server
B
S <
=
5L I
o 3
oz
L/
APAPI (Apache API)
ISAPI (Internet Server API)
NSAPI (Netscape Server API) (I

FIGURE 1-1: The ClearTrust SecureControl Plug-in API can be used by customers and
third-parties to develop custom code modules, called Plug-in Extensions, or PIX, that extend
the functionality of the ClearTrust Plug-in. Calls made using the Plug-in API are available to
the plug-in to which it’s registered and to the Web Server.

Asshownin Figure 1-1, ClearTrust SecureControl Web Server Plug-insare
implemented using the APIs of the respective Web Server vendors,
specifically, Apache, Microsoft, or Netscape. Plug-in Extensions (PIX) are
code modules that control the behavior of the ClearTrust SecureControl
Web Server Plug-in during authentication and authorization processing. For
example, you can extend the functionality of the ClearTrust SecureControl
Web Server Plug-in to:

* Direct the Web Server to acustom HTML filefor different return codes
from the ClearTrust SecureControl Authorization Server.

 Provide custom logging.
* Provide custom authentication of users.

* Integrate the ClearTrust SecureControl Plug-in with proprietary Web
Server plug-ins or third party plug-ins.
Integrating a custom extension involves several steps, from developing the
codefor the actual authentication implementation (or implementing athird-
party vendor’s API in your code) to integrating the object code into your
runtime environment by modifying the ClearTrust SecureControl Web
Server Plug-in’sconfiguration files. Devel opersuse Clear Trust Plug-in API
function callsin their codeto create new Plug-in Extensions (PIX); the code
must model one of the Web Server Plug-in’sfive processing phase handlers.

Before discussing the specific implementation details, here's abrief
overview of the default ClearTrust Web Server Plug-in five-phase request
handler process.

How the ClearTrust Plug-in Processes a URI Request

During aURI request, the Web Server invokesthe ClearTrust SecureControl
Plug-in to perform authentication and authorization. The ClearTrust
SecureControl Plug-in processes the request by executing a sequence of
phases. During each phase, the ClearTrust SecureControl Plug-in first
invokes aphase handler to perform an associated action and then invokesa
status handler to handle the status from the phase handler.

The status handler determines the next phase to execute or stopsthe
execution, and returns the status to the Web Server. Information for each
request is passed between the phase handlers and status handler using ahash
table. Thereisasingle status handler in the loop, but each phase hasitsown
distinct phase handler (see Figure 1-2).

Asthe ClearTrust Web Server Plug-in processesaphase, it first invokes any
custom phase handler that isregistered. The custom phase handler performs
its action and returns a boolean value indicating whether or not it handled
the phase.

 If it returns TRUE, the Plug-in skips the default handler.
 If it returns FALSE, the default handler isinvoked.

The ClearTrust Web Server Plug-in API

70

Chapter 3

After the phase handlers have completed, the status handler isinvoked to
handle the result from the phase handler. The Plug-infirst calls any custom
status handler that may exist. Like the phase handler, the custom status
handler returns a boolean value indicating whether or not it handled the
status.

* If the custom status handler returns TRUE, the default status handler is
still invoked. When the default status handler isinvoked, only logging
and messaging actions are allowed; processing for the URI request
Ceases.

* If the custom status handler returns FAL SE, the default handler is called
and invokes a Web Server function and/or executes the next phase
handler.

Figure 3-1 shows how the processing logic transfers between default phase
handlersand custom phase handlers, and how the status handler receivesthe
return codes that determine the next execution phase.

Current
URI requires
CUSTOM

Custom
auth

Custom
phase

handler
?

Process custom
auth handler

No No
Process custom
phase handler
False ———— RC=?
v
A True
Process default False

RC=?

phase handler

True

Y

Custom
status Process custom
—Yes—»
handler status handler
?2

No J
v
Process default
status handler

False

True

Process logging and
error messages

Figure 3-1. SecureControl Plug-in Processing Loop

The ClearTrust Web Server Plug-in API

71

72

Chapter 3

Phase Handlers Overview

During the processing of a URI request, the Clear Trust SecureControl Web
Server Plug-in executes a sequence of five phasesto perform authentication,
authorization, and single sign-on, ultimately determining the accessibility of
the URI. Thefive phase handlers are:

e Path Check Handler

e Session Handler
 Authentication Handler
 Authorization Handler
e Cookie Handler

PATH CHECK HANDLER

The Path Check Handler determines whether the request URI is protected.
The handler invokes the ClearTrust SecureControl Authorization server to
perform the path check.

« |f the URI isn't protected, the system returns the status code
CT_AUTH_URL_UNPROTECTED and the default status handler instructs the
Web Server to serve the requested URI.

 If the URI is protected, the system returns the status code
CT_AUTH_URL_PROTECTED and the default status handler executes the
Session phase. In addition, the Path Check Handler sets the allowable
authentication modes for the URI as configured in the Plug-in
Def aul t. conf file (securecontrol.plugin.auth_resource list) inthe
request table. The authentication mode key iSCT_ALLOMBLE_AUTH_MODES;
you can set multiple modes.

SESSION HANDLER
Session Handler determines whether or not the cookie used for single-sign-
on support has expired.

* If the cookie has expired, the system returns the status code
CT_SESSI oN_ExPI RED and the default status handler sends a vy
Aut hent i cat e response (HTTP 401) to the browser for re-authentication.

« |If the cookie has not expired, the system returns the status code
CT_SESSI ON_AcTI VE and the default status handler executes the
Authentication phase.

AUTHENTICATION HANDLER

The Authentication Handler authenticates the User based on the alowable
authentication modes (CT_ALLOMBLE_AUTH_MODES) Set by the Path Check
Handler.

Firgt, the Authentication Handler gets the alowabl e authentication modes
required by the URI from the request table (CT_ALLOWABLE_AUTH_MODES).
Using thislist, the Authentication Handler then checksto seeif the User has
aready authenticated with any of the allowable authentication modes.

 |f the User has aready authenticated with any of the required
authentication modes, the Authentication Handler sets a status code of
CT_ACCESS_REQUI RED.

« If the User has not authenticated with any of the required authentication
modes, the Authentication Handler authenticates the User with the first
authentication mode on the list. In order to authenticate the User via
form-based authentication, the Authentication Handler must get the
User’scredential (CT_USER CT_PASSWORD OF CT_DN) from the request table.
If the authentication mode is“BASIC” during non-form-based
authentication, the authentication is deferred to the Authentication
Handler.

» If noUser ID or DN is present in the request table, the Authentication
Handler sets a status code of CT_AUTH_BAD_USERNAME.

* If no password ispresent in the request table, the Authentication Handler
sets a status code of cT_AUTH _BAD_PASSWORD.

 If the User’s credential existsin the request table (User ID/password or
DN), the Authentication Handler attempts to authenticate the User
against the appropriate authentication mode.

Based on what isreturned from the authenti cation mode, the Authentication
Handler sets the status with the appropriate status code.

 |f the authentication is successful, the Authentication Handler sets the
authenticated bit (ct_AuTHENTI CATED) to Signify that the User has
authenticated successfully with the current authentication mode and
thereforewill not need to authenticate against thismodeinthefuture. The
Authentication Handl er al so setsthe authentication mode (CT_AUTH_MODE)
in the request table. The Authentication Handler uses cT_AutH_MDE to
determine whether or not it needs to authenticate the User.

« |f the authentication is not successful, the status code is handled as
follows:

The ClearTrust Web Server Plug-in API

74

Chapter 3

» TheWeb Serverisinstructed to returnawwv Aut hent i cat e response (HTTP
401) or isredirected to a custom logon page for the following return
codes:

CT_AUTH_BAD_USERNAMEThe User is not defined in the Clear Trust
SecureControl database.

CT_AUTH_BAD_PASSWORDT he password specified does not match the
User’s password.

» The Web Server isinstructed to return a FORBI DDEN response (HTTP 403)
or isredirected to a custom error page for the following return codes:

CT_AUTH_EXPI RED_ACCOUNTT he account has expired.
CT_AUTH_| NACTI VE_ACCOUNTThe account has not started yet.

CT_AUTH_PASSWORD_EXPI REDT he User’ s password has expired; it must
be reset.

CT_AUTH_USER_LOCKED_0UTThe Administrator has explicitly locked out
the User.

AUTHORIZATION HANDLER
The Authorization Handler determines whether or not a User has access to
the requested URI.

The Authorization Handler inspectsthe ct_autH MoDe inthe request table. If
CT_AUTH_MODE iS Set to upwor UbN, the Authorization Handler instructs the
ClearTrust SecureControl Authorization Server to perform authentication
and authorization in asingle step. Generally, the Authorization performs
only authorization but the Authorization Handler may set the status code
with values defined for both the Authentication and the Authorization
phase.

The Authorization Handler invokes the Authorization Server to perform the
authorization checking and sets the status code with the returned value.

» |f the Authorization Server returnsacr_AUTH_URL_ACCESS_DEN ED, the
Web Server isinstructed to return a ForBI DDEN response (HTTP 403) Of iS
redirected to a custom error page.

» |f the Authorization Server returnsa CcT_AUTH_URL_ACCESS_ALLOVED, the
Authorization Handler sets the status code to CT_CREATE_COXI E to
instruct the Status Handler to invoke the Cookie Handler.

COOKIE HANDLER

The Cookie Handler creates a cookie to send back to the User with a
successful request for aprotected URI and addsthe following datafrom the
request table:

« |f the Cookie Handler successfully creates a cookie, it setsthe statusto
CT_AUTH URL_AcceSS ALLoveD and the default status handler directs the
Web Server to serve up the requested URI.

* If therewasan error creating the cookie, the Cookie Handler sets a status
of ct_cooki E_ERROR and instructsthe Web Server to return aSERVER ERRCR
(HTTP 500) to the browser.

The ClearTrust SecureControl Plug-in provides users with a 1k data buffer
within the cookie that can be used for personalization or custom
development. You can use this data buffer to provide additional
functionality to a ClearTrust SecureControl cookie. For example, you may
want to create a Plug-in extension to add an e-mail address or other user
attributes to a cookie. Another option isto utilize the cookie for user
management functionslike encryption. Refer to the section titled, “ Request
Data” , for more information on this data buffer. Figure 1-2 illustrates how
the five phase handlers process a URI request.

The ClearTrust Web Server Plug-in API

75

76

Chapter 3

CT_AUTH_URL_UNPROTECTED

A\

CT_AUTH_URL_PROTECTED

Start

1

CT_PATH_CHECK_HANDLER

CT_SESSION_HANDLER

{

Serve the
requested URI

A

RC=? CT_SESSION_EXPIRED Send a WWW
= Authenticate
CT_SESSION_ACTIVE
CT_AUTHENTICATION_HANDLER
CT_AUTH_BAD_USERNAME
_ CT_AUTH_BAD_PASSWORD Send a WWW
RC=? N
Authenticate
CT_AUTH_EXPIRED_ACCOUNT
CT_AUTH_INACTIVE_ACCOUNT
CT_AUTH_PASSWORD_EXPIRED
Y CT_AUTH_USER_LOCKED_OUT _ |Send
RC=7 "~ |Forbidden

CT_ACCESS_REQUIRED

CT_ACCESS_HANDLER

!

RC=?

CT_AUTH_URL_ACCESS_DENIED _ |Send

CT_CREATE_COOKIE

CT_COOKIE_HANDLER

v

RC=? CT_COOKIE_ERROR

" |Forbidden

Send Server

v

CT_AUTH_URL_ACCESS_ALLOWED

TABLE 1-2: Phase Processing a URI Request

Error

Implementation Details: Custom Phase Handlers

If you wish to implement an authentication mechanism that isn't currently
supported as part of the core ClearTrust product or your Web Server—a
proprietary mechanism, or a PKI (private key infrastructure)
implementation, for example—you can extend the functionality of the
ClearTrust Web Server Plug-in by using the Plug-in API to write your own
phase handler, which can then be called during URI request processing. To
integrate the custom phase handler (the PIX) into the ClearTrust Web Server
Plug-in processing loop, your code must call the appropriate handler key
(see Table 1-1).

The ClearTrust SecureControl Plug-in APl isinstalled as part of the
ClearTrust Web Server Plug-in installation. You'll find the header filesin
the <securant_install_dir>/pluging/include subdirectory. The Plug-in API
comprises three header files and the libary file that’s specific to the Web
Server Plug-in that you'll be extending:

ct _table.h

ct_function_table.h

ct _request _data.h

ct-iisd40-plugin.lib (for Mcrosoft |l1S/ Wndows NT)

ct-nscp350nt-plugin.lib (Netscape Enterprise Server/W ndows
NT)

ct-nscp201sol - plugi n. so (Netscape Enterprise Server/Sol aris)
| i bsc42-apachel3x-pl ugin.a (Apache/ Sol ari s)

Seethe “ClearTrust SecureControl Plug-in API Reference” later in this
section for more information. Presuming that you' ve installed the
ClearTrust Web Server Plug-in and haveit integrated with your Web Server
(Apache, Microsoft 11S, or Netscape Enterprise Server), integrating a
custom authentication mechanism in your ClearTrust SecureControl
implementation involves only afew steps:

Developing the phase handler code, which will include calls to the third-party
security server using the third-party vendor-provided API and calls to the
ClearTrust Web Server Plug-in using the Plug-in API.

2 Compiling, testing, and debugging your custom phase handler.

The ClearTrust Web Server Plug-in API

3 Modifying the ClearTrust Web Server Plug-in’s configuration file
(<securant_install_dir>/plugins/conf/default.conf) to use the word “CUSTOM”
as the authentication mechanism.

Note that your specific ClearTrust SecureControl configuration can include
multiple PIX custom phase handlers, in addition to the default phase
handlers.

Integrating Custom Handlers

The phase handlers and the status handler are defined in afunction table (a
hash table consisting of handler keysand their associated function pointers).
The keys define the various phase handlers that comprise the Web Server
Plug-in. To customize the action that results from a phase handler or to alter
theflow of URI reguest processing, you must integrate your custom code by
registering your PIX in thisfunction table. You do thisby first obtaining the
table (using thect _get _function_table function call) andthenadding
your function to the table using thect _t abl e_put function call. For
example, your code could include something like this:

ct _table ptr ct_func_table = ct_get function_table();

ct_table put(ct_func_table, CT_AUTHENTI CATI ON HANDLER, ny-
cust -aut h);

The function table structure and definitions are found in the
ct_function_tabl e. h header file, whichis contained in the Securant\plugin
installation directory when you install the Web Server Plug-in. the
Addressahility for the function table is obtained through the function call .
Onceyou havethetable, you can add your new functionswith thef unct i on
cal. Thefollowing table describes the various keys.

TABLE 4-1: Handler Keys and their Descriptions

Key Description

CT_STATUS HANDLER The status handler. The status handler is called after the
execution of the phase handlers. Devel opers should reference
this key to customize actions that result from a phase handler
or to alter the URI request processing flow.

CT_SESSI ON_HANDLER The session handler. The session handler determines
determining whether the Single Sign-On session has expired.

Chapter 3

Key Description

CT_PATH_CHECK_HANDLER The path check handler. The path check handler determines
whether or not the requested URI is protected.

CT_AUTHENTI CATI ON_HANDLER | The authentication handler. The authentication handler
determines whether or not the user isvalid.

not the user has access to requested URI.

CT_ACCESS_HANDLER The access handler. The access handler determines whether or

CT_COCKI E_ HANDLER The cookie handler. The cookie handler creates the cookie
used in the Single Sign-On processing.

Compiling and Linking with the ClearTrust SecureControl Plug-in
API

This section provides guidelines for compiling and linking with the
ClearTrust SecureControl Plug-in API onthe following browserg/platforms:

* Microsoft IS
* Netscape on Windows NT
* Netscape on Solaris

Compiling and Linking for Microsoft IIS
This section tells you how to compile and link with the ClearTrust
SecureControl Plug-in API for Microsoft I1S.

Compiling for IIS
Compile Options:WIN32, DEBUG,_WINDOWSMSIISWINDOWS

Additional IncludeLibraries; <pl ugi n_i nstal | _dir>\incl ude

Linking for IIS
Additional Libraries: ct-iis40-plugin.lib

Additional Library Path:<pl ugin_install _dir>\lib
Additionally, 11Sfilter requires a. def file containing external declaration.

The following isan example of a. def file:

LI BRARY NTAUTH
DESCRI PTI ON ' NT Native Authentication Filter’

The ClearTrust Web Server Plug-in API

80

Chapter 3

EXPORTS
D | Main
Get Fil terVersion
Htt pFilterProc

Installing for IS
Toinstall your PIX on IS, you must add it to the I1S propertiesin the

Microsoft Manager Console at the Site level. Here is an example of adding

thefilter properties.

Elles Marre: |H' Augh

E s il el |l: WD ireebiapaneni il sulhD e gty 0

[o] cswe | Heo |

Compiling and Linking for Netscape (Windows NT)

This section tells you how to compile and link with the ClearTrust
SecureControl Plug-in API for Netscape on Windows NT.

Compiling for Netscape/NT
Compile Options:
WIN32, DEBUG_WINDOWSNETSCAPE,WINDOWSXP_WIN32

Additional Include Libraries: <pl ugi n_i nstal | _di r>\incl ude
and

<netscape server_dir>\include

Linking for Netscape/NT

Additional Libraries: ct-nscp300nt - pl ugi n. li b, ct - nsft 300nt -
plugin.lib, OF ct-nscp350nt-plugin.lib

Additional Library Path: <pl ugi n_instal | _dir>\lib

Installing for Netscape/NT

In order to install the ClearTrust SecureControl Plug-in on Netscape/NT,
you must modify the obj . conf file. Theinstallation requiresthe i ni t

f n=I oad- nodul es directive defining the name of theredirect dil. The second
Init fn=nt-auth-init directive definestheinitialization routine of the
redirect dil. The following is an example of obj.conf:

Init fn="1oad-nmodul es" funcs="nt-auth-init"
shl i b="C:./devel opnent/nt_aut h/ debug/ ntauth.dl "

Init fn="nt-auth-init"

For more information on installing and configuring a Netscape Plug-in,
refer to your Netscape documentation.

Compiling and Linking for Netscape/UNIX

This section tells you how to compile and link with the ClearTrust
SecureControl Plug-in API for Netscape/UNIX.

Compiling for Netscape/UNIX
Compile Options: - DNETSCAPE - DFI LE_UNI X - DXP_UNI X

Additional IncludeLibraries; <pl ugi n_i nstal | _dir>/incl ude
and

<netscape server_dir>\include

Linking for Netscape/UNIX
Additional libraries: /1i bct - nscp201sol - pl ugi n. so

Additional Library Path:<pl ugin_install _dir>/lib

Installing for Netscape/UNIX

Inorder to install the ClearTrust SecureControl Plug-in on Netscape/lUNI X,
you must modify the obj . conf file. The installation requiresthe i nit

f n=I oad- modul es directive defining the name of the redirect dll. The second
Init fn=nt-auth-init directive definestheinitialization routine of the
redirect dil. The following is an example obj . conf :

Init fn="1oad-nmodul es" funcs="nt-auth-init"
shli b="/opt/cairo/ dev/auth/nt_auth/ ntauth.so"

Init fn="nt-auth-init"

The ClearTrust Web Server Plug-in API 81

82

For more information on installing and configuring a Netscape Plug-in,
refer to your Netscape documentation.

Custom Authentication Example

Chapter 3

You can use the ClearTrust SecureControl Plug-in API to perform custom
authentication. The following nt_auth.c ClearTrust SecureControl Plug-in
Extension shows how to replace the ClearTrust SecureControl
authentication with native NT authentication. In order for thisto work, the
userlDs of the registered usersin ClearTrust SecureControl must be
identical to their NT userIDs.

Native NT Authentication

During Web Server initialization, the ClearTrust SecureControl Plug-in
Extension registersitsauthentication handler in thefunction table. When the
authentication handler isdriven, the extension checks whether or not a user
and password has been set. If they have been set, the ClearTrust
SecureControl Plug-in Extension performs NT native authentication, sets
the status, and returns a TRUE, which indicates that it has handled the
authentication phase.

| *
nt_auth.c

Copyright (c) 1998 Securant Technol ogies, Inc.
Al rights reserved.

Thi s nodul e denonstrates how you can extend the functionality
of the dearTrust Plug-in.

This sanple works with I1'S and Netscape/NT. To conpile for
IS, set the MBIIS conpiler directive, for Netscape set the
NETSCAPE conpil er directive.

nt _auth repl aces the d earTrust authentication with NT native
authentication. To extend the dearTrust Plug-in
functionality, you mnust:

1. During initialization of the Plug-in, register the phase
handl er in the function table. This nodul e registers the

nt _aut henticate routine for the AUTHENTI CATI ON phase handl er
in the routine:

regi ster_aut h_handl er

2. During the execution of the handler, set the status and
return a TRUE i f the handl er handl ed this phase (thus ski pping
the default handler) or return a FALSE if the handler didn't
handl e the phase

During authentication the extensi on checks whether or not a
user and password has been set. If they have, then the Pl ug-
in performs the NT native authentication and returns a TRUE
indicating that it has handl e the authentication phase.**/

#i ncl ude <stdio. h>

/'l Wndows header files

#i ncl ude <w ndows. h>

#i ncl ude <w nnt. h>

/1 O earTrust header files
#include "ct_function_table.h"
#i nclude "ct_request _data. h"

/'l Prototype for registering our custom authentication
routine

voi d regi ster_auth_handl er();
/'l Prototype for the nt authentication

int nt_authenticate (const ct_server_parms *server_parns,
ct_table ptr ct_req_table);

#ifdef MBIIS

/***] 1S requires three functions for a successful filter:
D | Main

GetFil terVersion

Hi tpFilterProc ***/

BOOL
W NAP
D | Mai n(
I N HI NSTANCE hinstD I,
| N DWORD f dwReason
IN LPVO D | pvCont ext OPTI ONAL
)
{

The ClearTrust Web Server Plug-in API

83

84

Chapter 3

switch (fdwReason)
{
case DLL_PROCESS ATTACH:
/11
/1 W don’t care about thread attach/detach notifications
/1
Di sabl eThreadLi braryCal I s(hinstD |);
regi ster_auth_handler();
br eak;
defaul t:
br eak;

}
return TRUE;

}
[**** Return the filter version, required by |1|S***/
BOCOL
W NAPI
Get Fi | terVersion(
HTTP_FI LTER VERSI ON * pVer

)

{
pVer - >dwFi | ter Ver si on = HTTP_FI LTER_REVI SI ON,

pVer->dwHl ags = (0); // No call backs for this filter

sprintf(pVer->l pszFilterDesc, "NI Native
Aut henticationtfilter, Version");

return TRUE; /1 Return true to make it happen
}

[**** This routine should never be driven, but IS requires
it there***/

DWORD
W NAPI
Htt pFi | ter Proc(

HTTP_FI LTER_CONTEXT * pf c,

DWORD Noti ficati onType,
va D * pvDat a

)

{
return TRUE;

}

#endi f

[**** Netscape initialization, much sinpler than IIS, isn't
it?**/

#i f def NETSCAPE

NSAPI _PUBLI C int nt_auth_init(pbl ock *param Session *sn,
Request *rQq)
{

regi ster_auth_handler();
return REQ PROCEED,

}
#endi f

/[**** Routine to register our authentication function to the
Cl ear Trust Plug-in**/

voi d regi ster_auth_handl er ()

{

ct table ptr ct _func _table = ct _get function_table();

ct _table_put(ct_func_table, CT_AUTHENTI CATI ON_HANDLER,
nt _aut henticate);

}

/Routine to perform NT Authentication. It first calls the
LogonUser APl to perform NT Authentication, then sets the
appropriate CearTrust status. This routine only returns TRUE
if the user and password was set. |If the user and password
isn't set, it lets the default authentication execute which
wi Il end up pronpting the user for the user and password. Once

The ClearTrust Web Server Plug-in API

85

86

Chapter 3

the user and password is set, the nt auth handl er nakes the
NT APl call authenticating the user and then returns a TRUE
directing ClearTrust not to performdefault authentication/

int nt_authenticate (const ct_server_parns *server_parns,
ct _table ptr ct _req_table)

{

BOCOL bHandl ed = FALSE;
handl e

BOOL bl sAut henti cated = FALSE
HANDLE hToken = O;
LPTSTR | pszUser = ct_table _find(ct_req_table, CI_USER);

LPTSTR | pszPassword = ct_table find(ct_req_table,
CT_PASSWORD) ;

[/ I'f no user or pw, then don't

/1 If the User and Password is supplied, we’'ll handle
aut henti cation

if (IpszUser!= NULL && | pszPassword!= NULL)

{

/'l Perform NT authentication. We specify a NULL domai n

/'l nane so the User will be searched t hrough out all the PDCs.

/1 Also, we call the LogonUser wi th LOGON32_LOGON NETWORK
| ogon

/'l type because we are just authenticating
/1 the user, not creating a process under the User’s account
bl sAut henti cated = LogonUser (| pszUser,
NULL,
| pszPassword,
LOGON32_LOGON_NETWORK
LOGON32_PROVI DER_DEFAULT,
&hToken) ;

/1l 1f isAuthenicated isn't 0, then the user is authenticated
i f (blsAuthenticated) {
/Il Set the AUTH MODE to U D. This tells O earTrust

/!l that only the IDis valid. CearTrust then perforns
/'l access checki ng without perform ng authentication
ct table put (ct _req_table, CT_AUTH MDE, "U D');

/'l Force access checking

SET_STATUS(ct _req_table, CT_CHECK ACCESS REQUI RED) ;

} else {

DWORD dwError = CetLastError();

/1 Set the appropriate CearTrust Error code
switch(dwError)

{

case ERROR LOGON _FAI LURE:

SET_STATUS(ct _req_t abl e, CT_AUTH _BAD USERNANE) ;

br eak;

defaul t:
SET_STATUS(ct _req_tabl e, CT_AUTH UNKNOM_ERROR)

br eak;

}

}

bHandl ed = TRUE; // We're handling the Authentication stage,
proceed directly

/!l to the status handl er
}
return bHandl ed;

}

Custom Error Pages Example

You can use the Clear Trust SecureControl Plug-in API to return a custom
page when aUser is denied access to a ClearTrust SecureControl protected
resource.

The ClearTrust Web Server Plug-in API

® e 0 0 00
®
~

88

Chapter 3

The following ClearTrust SecureControl Plug-in Extension shows how to
replace the requested URI with anew URI for various error codes that
ClearTrust SecureControl returns.

During Web Server initialization, the ClearTrust SecureControl Plug-in
Extension registers its status handler in the function table. When the status
handler isdriven, it checksthe current status. If it isan error, it replacesthe
requested URI with a custom error page and sets the status to
CT_AUTH URL_ACCESS ALLOvED. Thisforcesthe ClearTrust SecureControl
Plug-in to serve up the new URI.
/ *

* redirect.c

* Copyright (c) 1999 Securant Technol ogies, Inc.

* All rights reserved.

*

* Thi s nodul e denonstrates how you can extend the
functionality of

* the dearTrust Plugin.
*
* This sanple works with IS, Netscape/NT, and Netscape/ Uni x.

* To conpile for IS, set the MBIIS conpiler directive, for
Net scape set

* the NETSCAPE conpiler directive

*

* redirect replaces the requested URI with a new URl for
vari ous

* error codes returned fromC earTrust. Duringinitialization
of the

* plugin, this nmodule registers the status handler in the
function table.

*

* The status handl er checks the current status, if the status
is one

* we wish to return a customerror page, then replace the
requested UR

* with the customerror page and set the status to

* CT_AUTH URL_ACCESS ALLOVWED whi ch forces the d ear Trust
Plugin to serve

* up the new URI.

*

*/
#i ncl ude <stdio. h>
/'l Wndows header files
#i ncl ude <wi ndows. h>
#i ncl ude <wi nnt. h>
/1 CearTrust header files
#include "ct _function_table.h"
#i ncl ude "ct_request _data. h"
/'l Prototype for registering our custom status handl er
voi d regi ster_status_handl er();
/'l Prototype for status handler

int handl e_status (const ct_server_parns *server_parns,
ct _ table ptr ct _req_table);

/1 Module Definitions for the customer error pages

#defi ne REG STER _USER PAGE "/reg-user.htm"
#def i ne RE_REG STER USER PAGE "/re-reg-user.htm "
#def i ne USER _FORBI DDEN PAGE "/ forbidden. htm"
#ifdef MBIIS

/ * %

*

*IISrequires three functions for a successful filter:
*

*Di [Main

*Get Fil terVersion

*Ht t pFilterProc

*

**/

BOOL

The ClearTrust Web Server Plug-in API 89

90

Chapter 3

W NAPI

D | Mai n(
I N HI NSTANCE hinstD I,
| N DWORD f dwReason,

IN LPVA D | pvCont ext OPTI ONAL
)
{
switch (fdwReason)
{
case DLL_PROCESS ATTACH:
/1

/1 W don’t care about thread attach/detach notifications
/1

Di sabl eThreadLi braryCal I s(hinstD |);

regi ster_status_handl er();

br eak;

defaul t:

br eak;

}
return TRUE;

}

[*x
*
* Return the filter version, required by I1S
*
Y
BOOL
W NAPI
Get Fi | terVersion(
HTTP_FI LTER_VERSI ON * pVer

pVer - >dwFi | t er Ver si on = HTTP_FI LTER REVI SI ON;
pVer->dwHl ags = (0); // No call backs for this filter
sprintf(pVer->l pszFilterDesc, "Customerror handler");

return TRUE; /1 Return true to make it happen
}

/**

*

* This routine should never be driven, but I1S requires it
there

*
Y
DWORD
W NAPI
Htt pFi | ter Proc(
HTTP_FI LTER_CONTEXT * pfc
DWORD Noti ficationType
va D * pvDat a

return TRUE;

}
#endi f

/**

*

* Netscape initialization
*

*/

#i f def NETSCAPE

NSAPI _PUBLI C int redirect_init(pblock *param Session *sn
Request *rQq)

{

regi ster_status_handl er();

The ClearTrust Web Server Plug-in API

92

Chapter 3

return REQ PROCEED,

}
#endi f

/**

*

* Routine to register our status handler to the C earTrust
Pl ugi n

*

*/

voi d regi ster_status_handl er ()

{

ct_table_ptr ct_func_table = ct_get _function_table();

ct_table_put(ct_func_table, CT_STATUS HANDLER,
handl e_st at us) ;

}

/**

*

* Status Handl er. Checks for the error codes which we want to
return a

* customerror page. |If we are returning a customerror page,
t hen

* set the return code to TRUE indicating that we handl ed the
st at us.

* Also, set Status to CT_AUTH URL_ACCESS ALLOWED forcing the
serving

* of the customerror page
*
*/

int handl e_status (const ct_server_parns *server_parns,
ct_table ptr ct_req_table)

{
BOOL bHandl ed = FALSE;

/1 Switch off the current status

swi t ch(GET_STATUS(ct _req_tabl e))

{

/1 If we have a bad user nane, then we have an un-registered
/] user. Serve up registration page

case CT_AUTH BAD USERNAME:

/1 Since BAD USERNAME is returned if no User Name has been
/1l supplied, we only want to redirect if one is supplied
if (ct_table_find(ct_req_table, CT_USER)!= NULL)

{

ct _table put (ct _req_table, CT_URI, REG STER USER PAGE);
SET_STATUS(ct _req_table, CT_AUTH URL_ACCESS ALLOWED);
bHandl ed = TRUE;

}

br eak;

/1 If we have an expired or inactive account, then we need
Il to re-register the user

case CT_AUTH_EXPI RED_ACCOUNT:

case CT_AUTH_ | NACTI VE_ACCOUNT:

ct_table_put (ct_reqg_table, CT_URI, RE REGQ STER USER PACE);
SET STATUS(ct req_table, CT_AUTH URL_ACCESS ALLOWED);
bHandl ed = TRUE;

br eak;

/1 I'f the user is denied, serve up a customerror page.
case CT_AUTH URL_ACCESS_DEN ED:

ct_table_ put (ct_req_table, CT_URI, USER FORBI DDEN PAGE);
SET _STATUS(ct req_table, CT_AUTH URL_ACCESS ALLOWED);
bHandl ed = TRUE;

br eak;

defaul t:

br eak;

}
return bHandl ed;

The ClearTrust Web Server Plug-in API

93

94

ClearTrust SecureControl Plug-in APl Reference

Chapter 3

Hash Table Functions

The ClearTrust SecureControl Plug-in uses hash tables for both the function
table and request data. The hash table functions are located in the

ct _tabl e. h header file. Table 3-1 lists the hash table functions:

TABLE 4-2: Hash Table Functions

Code Function

voi d ct_tabl e_put Adds or replaces a value specified by the key.

(ct _tabl e_ptr table, const char* Note: the value isNOT copied, rather the pointer to the
key, const void* value) valueis stored.

void* ct _tabl e_find Returns the value pointer for the key. If the key doesn’'t

(ct _tabl e_ptr table, const char* exist, aNULL isreturned.
key)

voidct _t abl e_renove Removes the value pointer for the key.

(ct _tabl e_ptr table, const char*
key)

Request Data

Data associated with a URI request is stored in a hash table called

ct _request_dat a. Thistable is passed between phase handlers. The
ct_request_data Structureislocated inthect request _dat a. h header file.

Therequest datais passed to the phase handlersand isaso directly available
to functions other than phase handlers through the code:

ct _get _request _data_table (void* request)

The input parameter Request IS a pointer to the Web Server dependent
structure. The value of each request is described in the following table:

TABLE 4-3: Values of Input Parameter Request:

Request Pointer To

Netscape Enterprise Netscape Request structure, Request *

s Filter Context structure, PHTTP_FI LTER_CONTEXT

NOTE: For IS, the ct _request _dat a is not available until the SF_NOTI FY_URL_MAP

phase.

Request dataisretrieved from the request datatabl e through the hash lookup
using the keys described in Table 3-3.

TABLE 4-4: ClearTrust SecureControl Plug-in Request Data

Key

Type

Vaue

CT_ALLOWABLE_AUTH_MODES

char *

The allowable authentication modes for the
current request. The Authentication handler
determines what types of authentication
modes are accepted for the current URI
request: BASI C, CERTI FI CATE, CUSTOM
EDI RECT, LDAP, NT, SECURI D.

CT_AUTH_MODE

char *

The Authorization mode. The Authorization
handler determines what type of authorization
to perform using this value. The values are:
UPW- Perform Authentication and
Authorization. User ID and password are
supplied.

UDN - Perform Authentication and
Authorization. Locate User by Distinguished
Name.

U D, UNT, CUSTOM EDI RECT,
LDAP, SECURI D—Perform Authorization
only. Locate User by User ID.

The ClearTrust Web Server Plug-in API

95

96

TABLE 4-4: ClearTrust SecureControl Plug-in Request Data (Continued)

Chapter 3

Key

Type

Vaue

CT_AUTHENTI CATED

unsigned int

A bit mask that specifies the types of
authentication the User is currently
authenticated against:

BASI C (0x00000001)

CERTI FI CATE (0x00000004)
CUSTOM (0x00010000)

EDI RECT (0x00000020)
LDAP(0x00000010)

NT (0x00000002)

SECURI D (0x00000008)

CT_DN

char *

The User’ s Distinguished Name. When the
CT_AUTH_MODE is set to UDN, thisvalueis
used to retrieve the Distinguished Name for
authorization.

CT_ERR_MSG

char *

The error message to return to the browser.
When a WA AUTHENTI CATE

(HTTP/ 401) , FORBI DDEN

(HTTP/ 403) , or SERVER ERRCR
(HTTP/ 500) isreturned to the browser, this
message isincluded.

CT_FORM AUTH_MCDE

char *

The authentication mode of the form. This
value specifies which authentication
mechanism to use to authenticate the datain
the form.

CT_| S_PATH_PROTECTED

char *

Specifies whether or not the URL is protected
(Yes/No).

(continued)

CT_PASSVWORD

char *

The User’ s password. When the
CT_AUTH_MODE is set to UPW thisvalueis
used to retrieve the User’ s password for
authentication.

CT_PREV_USER

char *

The User ID or DN for the previous
authentication.

CT_STATUS

int

The status. Thisvalueis used by the status
handler to determine the Web Server action
and/or which handler to execute.

CT_URI

char *

The requested URI. IF thisvalueis
overridden, the Web Server will be instructed
to serve the new URI.

TABLE 4-4: ClearTrust SecureControl Plug-in Request Data (Continued)

Key Type

Vaue

CT_USER char *

The User'sID. When the CT_AUTH_MODE is
set to UPW this valueis used to retrieve the
User ID for authentication. For both UPWand
Ul D, thisvaueis used for authorization.

CT_USER DATA void *

A pointer to a buffer containing user-defined
raw dataincluded with the Clear Trust
SecureControl cookie. The length of the
buffer is specified in the
CT_USER DATA LEN status code.

CT_USER DATA_LEN unsigned
short

The length of the CT_USER_DATA buffer, in
bytes. The maximum length is 1024 bytes.

NOTE: You can configure the Web Server to return a customized HTML page with the

HTTP return codes.

Status Handler

The ClearTrust SecureControl Plug-in has a single status handler that
manages the processing flow based on the status code returned from any

phase handler. The status handler does not know the identity of the phase
handler that invokesit; it smply uses the status code to determine the next
action to take or the next phase handler to execute.

The status code isset inct _request _dat a. For details about
ct _request_dat a, refer to the section titled,” Request Data” . Table 3-4 lists
the recognized status codes and their resulting actions.

The status code determines the action and/or the next phase of execution.
For convenience, two macros—seT_STATUS and GET_STATuUs—are supplied
to set and get the status respectively. Table 3-3 shows the recognized values
and meanings of the different status codes. The status code values are found
inthect _function_tabl e. h header file.

The ClearTrust Web Server Plug-in API

97

98

Chapter 3

TABLE 4-5: Recognized Status Codes and Resulting Actions

Status Code

Resulting Actions

CT_SESSI ON_ACTI VE

Execute Path Check phase.

CT_AUTH_URL_PROTECTED

Execute Authentication phase.

CT_CHECK_ACCESS_REQUI RED

Execute Authorization phase.

CT_CREATE_COOKI E

Execute the Cookie phase.

CT_AUTH_URL_ACCESS_ALLOWED
CT_AUTH_URL_UNPROTECTED

Return the requested URI to the browser.

CT_AUTH_BAD_USERNANME
CT_AUTH_BAD_PASSWORD
CT_SESSI ON_EXPI RED

Return aWAWWV Aut hent i cat e (HTTP 401) tothe

browser.

For form-based authentication, the session is invalidated,

and the User is redirected to alogon page.

CT_AUTH_EXPI RED_ACCOUNT
CT_AUTH_| NACTI VE_ACCOUNT
CT_AUTH_PASSWORD_EXPIRED
CT_AUTH_URL_ACCESS_DENI ED
CT_AUTH_USER_LOCKED_OUT

Return a FORBI DDEN (HTTP 403) to the browser.
For form-based authentication, the User is redirected to

the appropriate error page.

CT_AUTH_UNKNOWN_ERROR
CT_AUTH_DATABASE_ERROR
CT_COOKI E_ERROR
CT_NO_AUTH_SERVERS
CT_SERVER TI MED_OUT
CT_UNHANDLED REQUEST

Return an error message (HTTP/500) to the browser.
For form-based authentication, the User is redirected to

the appropriate error page.

Chapter 4
Securing Non-Web Applications

This chapter tells you how to integrate non-Web Applicationsinto the
ClearTrust SecureControl security architecture. It includes the following
sections:

* Integrating Non-Web Applications
» Using Non-Web APIs

Integrating Non-Web Applications

A non-Web Applicationisaprogramwrittenin C, C++ or Javathat accesses
security services such as authorization, authentication and access control
through ClearTrust SecureControl. These non-Web A pplications can usethe
ClearTrust SecureControl API to fully integrateinto the existing Clear Trust
SecureControl security architecture. This alows non-Web programs to be
managed by the same Clear Trust SecureControl security management tools
that govern the rest of the system. The security policy management and
control is externalized from the non-Web Application. Changes in security
policy does not require re-coding or re-compiling the non-Web
Applications.

For example, if an Administrator wishesto restrict aUser’s accessto a
certain set of resources, the Administrator uses the ClearTrust
SecureControl manager to set the security policy. Non-Web Applications
written using the ClearTrust SecureControl API then automatically pick up
the changes the next time the User tries to access the secured resources.
Without using the ClearTrust SecureControl API, programmers would be
forced to go in and change the hard-coded setting for that User. Or, if the
settings were stored in an access control list, the Administrator would have
to go there to make the changes in addition to making the changesin the

e0o 0000
[{]
©

100 ¢

Chapter 4

ClearTrust SecureControl system. The use of the ClearTrust SecureControl
API dlows all security policy to be done centrally via ClearTrust
SecureControl Manager.

Internal Resource Applications

Internal Resource Applications are non-Web Applications that define their
functionality and resourcesinternal to the program. A typical use of the API
Inthis caseisto alow ClearTrust SecureControl to manage the security
policies of an internal resource Application. By default, when an
Application is created, it has one Application Function: ACCESS. The
ACCESS function is used by ClearTrust SecureControl-enabled Web
Servers to determine a User’s access rights to an Application; however, an
Administrator may add additional Application Functionsto the Application.

The additiona Application Functions can further define whether or not a
User has privileges to use various services associated with an Application.
The access rights to these additional functions can be determined through
the ClearTrust SecureControl API. By defining an Application and its
functions using ClearTrust SecureControl Manager, the non-Web
Application can then make callsto the ClearTrust SecureControl system to
seeif Usersarevalid and if they have been assigned access to the
Applications functions.

The security policies are separate from the Application code so that the
security policies can be changed without affecting the Application code.
Several disparate security systems are not needed. All security policesare
centrally managed under one coherent security architecture and controlled
by ClearTrust SecureControl

Example. Megasoft’s customer account Application has varying functionality

depending on the client’s service contract. Conseguently, Megasoft wants
all their customersto be able to access the Application but return an
interface supporting only the level of functionality that matchesthe client’s
service contract. To do this, a ClearTrust SecureControl Administrator
would create an Application: CustomerAccountApplication. Next, the
Administrator defines the URI of the Application,

/ cust omer account app. cgi , and a Web Server object who owns the
Application, WebServer. The Administrator then defines Application

Functions representing the various functionality of the
CustomerAccountApplication. For example, there could be create New
Account, Edit Existing Account andDel ete Account functions.

The Administrator associates either a Smart Rule or Basic Entitlement with
the ACCESS Application Function and each additionally defined
Application Function.

During arequest for the CustomerAccountApplication, the ClearTrust
SecureControl enabled Web Server processes the ACCESS function to
determine accessibility to the Application. Once a User is granted access,
Megasoft's Application usesthe Clear Trust SecureControl API to determine
the different functions the customer has access rights to, and returns the
correct interface which supports the function set.

Using Non-Web APIs

ClearTrust SecureControl providesan API in C and Javathat allowsyou to
use ClearTrust SecureControl as your Applications’ security engine. For
details about using the ClearTrust SecureControl API, refer to the

Clear Trust SecureControl Developer’s Guide.

Java API

The APIServerProxy provides the communication interface between the
client Application and the ClearTrust SecureControl APIServer. Use of the
Java API requires the following start-up sequence:

1 Create an APIServerProxy passing in the host computer name and port
assigned to the APIServer.

2 Define the connect parameters including the name, password and role of a
valid ClearTrust SecureControl Administrator. This ensures that only
authorized connections are made via the API. Only programmers provided with
this Administrator security information can make a valid connection.

3 After these two initialization steps, the programmer is free to call the
checkAccess, checkFunction or validateUser methods. These three methods
form the heart of the run time API and perform all the security access checking
and User validation. The following code snippet shows how to test for access
permissions to a URL.

API Server Proxy serverProxy = new APl Server Proxy(host, port);

server Proxy. connect (user Nane, password, role);

Securing Non-Web Applications

102 ¢

Chapter 4

if (!'validateUser(userNane, password)) return false;

i sAccessi bl e = checkAccess(userNane, null, \ebServer Nane,
uri);

i f (isAccessible) displayMessage("Access allowed.");

el se displ ayMessage("Access denied.”);

server Proxy. di sconnect () ;

The following code snippet shows how to test for User validity and access
to an Application Function.

API Server Proxy serverProxy = new APl Server Proxy(host, port);
server Proxy. connect (user Nane, password, role);

if (!'validateUser(userNane, password)) return false;

i sAccessi bl e = server Proxy. checkFuncti on(user Nane, null,
Appl i cati onName, ApplicationFunction);

if (isAccessible) displayMessage("Access allowed.");

el se displ ayMessage("Access denied.");

server Proxy. di sconnect () ;

Typically, you validate the User just once before calling checkAccess or
checkFunction. This savestime. If you want to validate the User each time
checkAccessis called, include these parameters for the test. However, you

typically connect to the server proxy only once during Application
initialization.

NOTE: Error handling code is not included here.

C API

Use of the C API requires that the connect function must be called before
callstoct _check_access, ct_check_function Of ct_val i date_user. The
following code snippet shows how to validate a User and check his
accessibility to a secured resource.

NOTE: Error-handling code not shown.

ct _connect (server Name, userNane, password, role, port);
ct_validate_user(userName, password, isValid);
if ('isvalid) return;

ct _check_access(user Nanme, password, \WebServerNane, uri,
i sAccessi bl e);

i f (isAccessible) displayMessage("Access allowed.");

el se displ ayMessage("Access denied.");

ct _di sconnect ();

How to test for user validity and access an Application Functionisshownin
the following code snippet:

ct _connect (server Name, userNane, password, role, port);
ct_validate_user(userName, password, isValid);

if (tisvalid) return;

ct _check_function(userNane, password, ApplicationNane,
functionNane, isAccessible);

i f (isAccessible) displayMessage("Access allowed.");
el se displ ayMessage("Access denied.");

ct _di sconnect ();

Securing Non-Web Applications

104 ¢ Chapter 4

Index

A

Admin structure 17
AdminGroup structure 17
API object relationships 13
APIs

non-Web 101
application filters 13
Application structure 18

ApplicationFunction structure 19

ApplicationURL structure 20
associated-with 13
authentication 82

custom 82

native NT 82
authentication handler 73
authorization handler 74

B

Basic Entitlement 20

basic entitlements 14

Basic Entitlementstructure 20
batch loading users 12

C

compiling and linking 79
for Microsoft 11S 79
for Netscape/NT 80
for Netscape/lUNIX 81

connect only once 15

contained-in 13

container objects 13

contains 13

cookie handler 75
ct 26
CT_ACCESS HANDLER 79
CT_ALLOWED AUTH_MODES 95
CT_AUTH_BAD_PASSWORD 98
CT_AUTH_BAD_USERNAME 98
CT_AUTH_DATABASE ERROR 98
CT_AUTH_EXPIRED ACCOUNT 98
CT_AUTH_INACTIVE_ACCOUNT 98
CT_AUTH_MODE 95
CT_AUTH_PASSWORD_EXPIRED 98
CT_AUTH_UNKNOWN_ERROR 98
CT_AUTH_URL_ACCESS ALLOWED
98
CT_AUTH_URL_ACCESS DENIED 98
CT_AUTH_URL_PROTECTED 97
CT_AUTH_URL_UNPROTECTED 98
CT_AUTH_USER LOCKED OUT 98
CT_AUTHENTICATED 96
CT_AUTHENTICATION_HANDLER
79
CT_CHECK_ACCESS REQUIRED 98
ct_check_function function 58
ct_connect function 26
CT_COOKIE_ERROR 98
CT_COOKIE_HANDLER 79
CT_CREATE_COOKIE 98
ct_create_entitlement function 28
ct_create user_and properties function
30
ct_disconnect function 30
CT_DN 96
CT_ERR_MSG 96

106 ¢

ct_flush_cache function 31

CT_FORM_AUTH_MODE 96

ct_get_entitlement function 32

ct_get_user_and_properties function 33

ct_get user_and properties by dn
function 34

CT_IS PATH_PROTECTED 96

CT_NO AUTH_SERVERS 98

CT_PASSWORD 96

CT_PATH_CHECK_HANDLER 79

CT_PREV_USER 96

ct_reset_password function 31, 32, 34

CT_SERVER TIMED OUT 98

CT_SESSION_ACTIVE 97

CT_SESSION_EXPIRED 98

CT_SESSION_HANDLER 78

CT_STATUS 96

CT_STATUS HANDLER 78

CT_UNHANDLED REQUEST 98

CT_URI 96

CT_USER 97

CT_USER DATA 97

CT_USER DATA_LEN 97

ctxt 26, 61

custom authentication 82

custom error pages 87

E

efficient use of the API 15
Entity Header structure 21
error pages 87

Extending the function of the ClearTrust

plug-in 68
F

functions
run-time 57

G
Group structure 21

H

handler
authentication 73

authorization 74
cookie 75
overriding 78
path check 72
phase 69, 72
session 72
status 69, 97
handler keys 78
hash table functions 94

input parameter request values 95
installing
for Microsoft 11S 80
for Netscape/NT 81
for Netscape/UNIX 81

L

linking 79
for Microsoft 11S 79
for Netscape/NT 80
for Netscape/UNIX 81

M
minimize API calls 15

N

non-container objects 13
non-Web APIs 101
non-Web Applications 99

O

object relationships 13
overriding handlers 78
overriding phase processing 97
overview

SecureControl API 11

P

path check handler 72
phase handler 69, 72
phase processing

overriding 97
processing URI requests 69

R

Realm structure 21
registration tool 12
relationships 13
request data 94
request data keys 95
run-time functions 57

S

SecureControl APl overview 11

session handler 72

status codes 97

status handler 69, 97

structure definintion
AdminGroup 17

structure definition
Application 18
ApplicationFunction 19
ApplicationURL 20
Basic Entitlement 20
Entity Header 21
Group 21
Realm 21

User 22
UserProperty 23
WebServer 25

structure definitions 17
Admin 17

U
URI requests, processing 69
use the User and UserProperty functions
16
user management tool 13
User structure 22
UserProperty structure 23
users
batch loading 12

\Y,

void ct_table put 94
void ct_table remove 94
void* ct_table find 94

W
WebServer structure 25

	��� Introduction
	��� Using the ClearTrust SecureControl API
	ClearTrust SecureControl API Overview
	Batch Loading of Users
	Registration Tool
	User Management Tool
	Application Filters

	API Object Relationships
	Containment Relationships
	Basic Entitlements

	Multi-threaded Programming
	Using the ClearTrust SecureControl API Efficiently
	Connect Only Once
	Minimize the Number of API Calls
	Incorrect
	Correct

	Use the User and UserProperty Functions

	ClearTrust SecureControl Object Definitions
	CT_Admin Structure
	CT_AdminGroup Structure
	CT_Application Structure
	CT_ApplicationFunction Structure
	CT_ApplicationURL
	CT_ExplicitEntitlement Structure
	CT_EntityHdr Structure
	CT_Group Structure
	CT_Realm Structure
	CT_User Structure
	CT_UserProperty Structure
	CT_WebServer Structure

	SecureControl Functions: Administrative and Runtime
	Administrative Functions
	ctxt_connect (and ct_connect)
	ctxt_connect_admin (and ct_connect_admin)
	ctxt_create_entitlement (and ct_create_entitlement)
	ct_create_user_and_properties
	ctxt_disconnect (and ct_disconnect)
	ct_flush_cache
	ct_force_password_expiration
	ctxt_get_entitlement (and ct_get_entitlement)
	ct_get_user_and_properties
	ct_get_user_and_properties_by_dn
	ctxt_reset_password (and ct_reset_password)
	ct_save_user_and_properties
	ctxt_set_password (and ct_set_password)
	ClearTrust SecureControl Object Functions
	Relationships and Associations
	ct_get_num_of_obj_rels
	ct_get_obj_by_rel_index
	ct_get_obj_by_rel_range
	ct_get_obj_by_rel_name
	ct_get_objs_by_rel_names
	ct_set_rel
	ct_del_rel

	Runtime Functions
	ct_check_access
	ct_check_function
	ctxt_check_password (and ct_check_password)
	ctxt_create_app_func (and ct_create_app_func)
	ctxt_create_app_url (and ct_create_app_url)
	ct_get_apps_for_user
	ctxt_validate_user (and ct_validate_user)

	ClearTrust SecureControl API Sample Code and Examples
	C Sample Code
	Java Examples

	Linking with the ClearTrust SecureControl C API
	Library for Unix
	Library for Windows NT

	��� The ClearTrust Web Server Plug-in API
	Extending Functions of the ClearTrust Web Server Plug-in
	FIGURE 1-1:� The ClearTrust SecureControl Plug-in API can be used by customers and third-parties ...
	How the ClearTrust Plug-in Processes a URI Request
	Phase Handlers Overview
	Path Check Handler
	Session Handler
	Authentication Handler
	Authorization Handler
	Cookie Handler
	TABLE 1-2:� Phase Processing a URI Request

	Implementation Details: Custom Phase Handlers
	1 Developing the phase handler code, which will include calls to the third-party security server ...
	2 Compiling, testing, and debugging your custom phase handler.
	3 Modifying the ClearTrust Web Server Plug-in’s configuration file (<securant_install_dir>/plugin...
	Integrating Custom Handlers
	TABLE 4-1:� Handler Keys and their Descriptions

	Compiling and Linking with the ClearTrust SecureControl Plug-in API
	Compiling and Linking for Microsoft IIS
	Compiling for IIS
	Linking for IIS
	Installing for IIS

	Compiling and Linking for Netscape (Windows NT)
	Compiling for Netscape/NT
	Linking for Netscape/NT
	Installing for Netscape/NT

	Compiling and Linking for Netscape/UNIX
	Compiling for Netscape/UNIX
	Linking for Netscape/UNIX
	Installing for Netscape/UNIX

	Custom Authentication Example
	Native NT Authentication

	Custom Error Pages Example
	ClearTrust SecureControl Plug-in API Reference
	Hash Table Functions
	TABLE 4-2:� Hash Table Functions

	Request Data
	TABLE 4-3:� Values of Input Parameter Request:
	TABLE 4-4:� ClearTrust SecureControl Plug-in Request Data�

	Status Handler
	TABLE 4-5:� Recognized Status Codes and Resulting Actions

	��� Securing Non-Web Applications
	Integrating Non-Web Applications
	Internal Resource Applications

	Using Non-Web APIs
	Java API
	1 Create an APIServerProxy passing in the host computer name and port assigned to the APIServer.
	2 Define the connect parameters including the name, password and role of a valid ClearTrust Secur...
	3 After these two initialization steps, the programmer is free to call the checkAccess, checkFunc...

	C API
	A
	B
	C
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W

