NonStop Software SDK
Application TechNote

ODBC Sample
Application for Tandem

NonStop® SQL/M X

NonStop Software Developers’ Page

1.0

The Windows NT® Server program discussed in this NonStop Software Application
TechNote is the first in a series of samples developed by Tandem’s Advanced Technol-
ogy Group (ATG) expressly for the NonStop Software Developers’ Page. As Tandem'’s
ATG continues working with the NonStop Software product line, you'll find other
application notes, technical tips, and tutorials to help you with your NonStop Software
development efforts. Add a hot-link to this page to your Web browser, and check back
here often for updates.

This Application Note contains the following information:

e  Qverview and Summary of Steps

* Running the Sample Application

* About ODBC

* Walk-through of the Source Code

e Summary of Key ODBC Calls Used in “odbcapi.c” Sample Application
e DDL Listing For the NonStop SQL/MX Database Sample Table

* Source Code Listing for ODBC Sample Application

Overview and Summary of Steps

The sample program discussed in this Application Note provides a working example of
aWindows NT Server console application that uses ODBC (open database connectiv-
ity) function calls to access and update a NonStop SQL/M X database table. (For more
information about ODBC in general, see About ODBC.) The program has been written
in the C programming language using Microsoft Visual C++ 4.2, but you can compile

10of 20



Overview and Summary of Steps

and link the program using other compilers as long as you modify the program to
account for different filenames in your “include” statements and other such details.

This sample program is designed to help developers understand how to use ODBC API
calls to access and perform transactions on a NonStop SQL/MX database, but the pro-
gam will also work with other relational database management systems. Before running
the program, you must create the four-column table in the NonStop SQL/MX database
using the statements in tB®L Listing For the NonStop SQL/MX Database Sample
Table

Here's a summary of the steps you must take before you’ll be able to run the sample
program:

1.

Install and configure the NonStop SQL/MX database. Seddh&op SQL/MX

Installation Guide, available on the NonStop SQL/MX CD, for more information.

Be sure to consult the Readme file as well for any late breaking changes to the instal-
lation and configuration instructions.

Install the NonStop SQL/MX ODBC client software (the DLL (dynamic link
library) which is included with the NonStop SQL/MX product), and configure the
Windows NT Server ODBC Manager to use this driver. The sample program has
been used with the Tandem NonStop SQL/MX database product and with the
Microsoft SQL Server 6.5 database.

In targeting one database or another, developers must remember to configure the
appropriate ODBC Driver (sqglodbc.dll or tdm_odbc.dll) in the Control Panel or
through the NonStop ODBC/MX MS ODBC Administrator.

Create a NonStop SQL/MX table using the DDL listed later in this Nibd (List-

ing For the NonStop SQL/MX Database Sample Tjabie sample program inter-
acts with this table. (The User ID and password were configured during NonStop
SQL/MX installation, during ODBC installation (ODBC Init phase).

Download theodbcapi.c file from the NonStop Software Developers’ Page or copy
from the NonStop Software SDK CD to your Windows NT Workstation or Windows
NT Server system. Make sure all the “included” files are available to the compiler
and located in the appropriate subdirectories.

For a step-by-step tutorial about the sample program, refer Wélkethrough of
the Source Codas you read the code listing.

For a quick summary of the ODBC functions in the sample program, refer to the
Summary of the key ODBC callsused in the sample program.

Compile and link the odbcapi.c file using Microsoft Visual C++ 4.2 (or higher).
You'll be prompted to create a default workspace; click Ok and proceed. When the
build completes, you should have an executable nawitazhpi.exe in your Visual

C++ working directory.

You can run the program from within the Microsoft Visual C++ environment; using
the Run command from the Windows NT Start menu; or by typing the filename at
the Windows NT Server command prompt. Beening the Sample Applicatidar
additional details.

2 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Running the Sample Application

2.0 Running the Sample Application

The sample application was created using the Microsoft Visual C++ console application
template as a starting point. The console dialog for the application is shown in Figure 1.

Figure 1. The Sample Application is a Windows NT Server console application

E“ﬁNonSmpSoﬂwmeSDKSamNeDDBCAkamhn

Executing G:“FProgram Files“DeuvStudio“UGwodbc_exm \Debug~ODBCAFI .exe
HonStop Software SDK Sample ODBC Application
Copyright 1997 by Tandem Computers Incorporated.

Syntax: OdbcApi <0dbc Data Source Hame> <0dbc User Id> <0dbc Password>

Preszs any key to exit ...

The NonStop SQL/MX database table and schema need to be created in advance, using
the DDL (data definition language) listing, before you can run the program. (The pro-
gram itself contains DML (data manipulation language)).

To execute the program, enter odbcapi <database name> <user name> <password> as
asingle command line from the Windows NT Server (or Workstation) Command

Prompt. Alternatively, you can enter this same information using the Run command

from the Windows NT Server start menu, or by using the Execute command from

within the Microsoft Visual C++ development environment (by specifying the com-

mand arguments in the command line optionsin Microsoft Visual development environ-
ment). If you don't enter all of this information, you'll be prompted as shown in Figure
1.

When the program executes, it will first connect to the specified database and display
database information.

Next, the program deletes any records from the table which may exist from previous
runs. After deleting the records, the program inserts records (whose values have been
hard-coded into the application code) into the database and then displays these records.

Finally, the sample program updates the records in the database and exits the applica-
tion.

ODBC Sample Application for Tandem NonStop® SQL/MX 3of 20



About ODBC

3.0

About ODBC

4.0

Microsoft's ODBC (open database connectivity) is an industry-standard call-level inter-
face which enables access to a wide range of SQL data sources. ODBC aligns with the
X/Open and 1ISO SQL language standards and is supported by virtually all relational
database product vendors, thus ensuring interoperability and portability of application
source code. Application developers can use ODBC (rather than embedded SQL or the
native CLI of a particular database product) in their application code to ensure the wid-
est target market for their application. The ODBC CLI performs the following func-
tions:

* Provides alocally bound call interface

* Instantiates a session with a named data source

* Defineslocal storage

* Sends SQL requests to that data source

* Retrievesresults data produced by that data source

For more information about ODBC, see the Microsoft ODBC programmers reference
books, available from Microsoft Press, or on the Microsoft Devel opers Network Web
site (http://www.microsoft.com/msdn/). Both high-level and detailed information about
using the SQL language in the context of application programming is contained in the
Microsoft publications.

Walk-through of the Source Code

The sample application begins by accepting the data source name (schema name) and
logon information (username and password) and providing these to the NonStop SQL/
MX for validation. The ODBC API calls then begin with connection to the specified
database and displaying the database information (database name and version) to the
user. Next, the application deletes any records that may be present in the table, inserts
the same record 10 times (which are hard-coded into the program), and then displays
these records in the consol e window.

Note that by default, ODBC transactions are in auto commit mode, and this has not been
disabled in this application by use of SQL SetConnectOption. In auto commit mode,
every database operation is a transaction which is committed when performed. Auto
commit mode is suitable for transactions that may consist of asingle SQL statement (as
in this program, for example).

Here’s a more detailed overview of the key ODBC calls that the program uses. Refer to
the odbcapi.c file as you step through the summary below. For more detailed informa-
tion about any of the ODBC callls listed, see the Micra®8fBC Programmers Refer-

ence, available from the Microsoft Developers Network (MSDN) library.

1. The application first allocates memory for an environment handle and initializes the
ODBC call level interface by calling tf8QLAllocEnv function. An application must
call SQLAIllocEnv prior to calling any other ODBC functid@@how me the code.

4 of 20

ODBC Sample Application for Tandem NonStop® SQL/MX



Walk-through of the Source Code

2. The application then uses the SQLAIllocConnect function to allocate memory for a
connection handle (within the environment identified above) for connection between
the ODBC Driver Manager and the sample application. Show me the code.

3. Next, the application makes a connection to the data source using the SQLConnect
call. The SQL Connect loads the driver and establishes a connection to the data
source, using the connection handle, the data source name, user name, and password.
The connection handle references storage of all information about the connection,
including status, transaction state, and error information. Show me the code.

4. Information about the database (ODBC driver, database name, and database version
information) is obtained using the SQLGetInfo function. (SQL Getlnfo returns gen-
eral information about the driver and data source associated with the hdbc.)Show me
the code.

5. Once the connection between the client and server have been established, the appli-
cation now needs to send an SQL command to the server; it uses the SQLAllocSInmt
to alocate a statement handle for this purpose. SQLAIlocStmt all ocates memory for
a statement handl e and associates the statement handle with the connection specified
by hdbc. An application must call SQLAIllocStmt prior to submitting SQL state-
ments. Show me the code.

6. The SQLExecDirect function takesthe SQL string and sends the string to the server
to perform the ‘Insert’, ‘Update’ and ‘Select’ SQL operations on the database.
SQLExecDirect is the fastest way to submit an SQL statement for one-time execu-
tion. Show me the code.

7. To retrieve data after performing the ‘Select’ statement, the application first binds
the columns to be retrieved to program variables usin§@h&indCol function.
SQLBiIndCol assigns a value returned from a DBMS to a program variable in the cli-
ent application., assigning the storage and data type for a column in a result set,
including: 1) a storage buffer that will receive the contents of a column of data; 2)
the length of the storage buffer; 3) a storage location that will receive the actual
length of the column of data returned by the fetch operation; and 4) data type con-
version.Show me the code.

8. To fetch the data the application then calls3QkFetch function in a loop until all
the rows have been fetched. The driver returns data for all columns that were bound
to storage locations with SQLBindC&how me the code.

9. After the fetch, the statement handle is freed by callin@fiid-reeSmt to close
the cursor. SQLFreeStmt stops processing associated with a specific hstmt, closes
any open cursors associated with the hstmt, discards pending results, and, optionally,
frees all resources associated with the statement h&iie. me the code.

10. All errors are handled through calls to 8@LError function after any ODBC func-
tion fails or returns a warning. SQLError returns error or status information.

11. Just before exiting the application the program frees the environment handle (and
releases all memory associated with it) by usiQgFreeEnv. Show me the code.

ODBC Sample Application for Tandem NonStop® SQL/MX 5 of 20



Summary of Key ODBC Calls Used in “odbcapi.c” Sample Application

5.0 Summary of Key ODBC Calls Used in “odbcapi.c”

Sample Application

ODBC Call Functional Description

SQLAIIoCENV Allocates the environment

SQLATTocConnect Allocates a connection handie (for connection
between ODBC Driver Manager and the applica-
tion)

SQLConnect Connects o the data source (requires connection
handle, a data source name, user name, and pass-
word)

SQLGelnfo Gels the dafabase name and version number

SQLAITocSImt Allocaies a statement handle for sending SQL com-
mands to the server

SQLEXecDirect Sends SQL Sirings (Tor INSERT, UPDATE,
DELETE) to the server

SQLBIndCol Binds columns to be refrieved to program variables

SOLFeich Feiches (as in scrollable cursors) the daia

SQLFreeSimt Releases the staiement handle

SQLETrTor Handles errors after any ODBC function failures or
warnings

SQLFreeEnv Releases the environment handle

6.0 DDL Listing For the NonStop SQL/MX Database

Sample Table

Usethe DDL (datadefinition language) below to create atarget database using NonStop
SQL/MX. For more information about creating databases, tables, and using the Non-
Stop SQL/MX database product, see the NonSop SQL/MX Programming Manual for C

and the NonSop SQL/MX Reference Manual, available on Tandem'’s Developers’ Page.
From Tandem’s home page (http://www.tandem.com), select “Products,” then “Non-

Stop Software,” then “Developers’ Page,” and then “Manuals.”

set schema tandem system nsk. odbc;
drop tabl e odbcapi;
CREATE TABLE QOdbcApi

(
SYS NAME character(16) not null nondroppable ,
USE_DATE character(20) not null nondroppable ,
DATA 001 character(08) not null nondroppable ,
DATA 002 character(08) not null nondroppable

)

attri butes audit;

6 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

7.0 Source Code Listing for ODBC Sample Application

1 1

/I OdbcApi.c 1

/I Copyright 1997 by Tandem Computers Incorporated //

/I All Rights Reserved 1

1 1

) 1

) /)

/I THISPROGRAM IS PROVIDED TO CUSTOMERS OF TANDEM COMPUTERS //
/I INCORPORATED FOR EDUCATIONAL PURPOSES ONLY. I

1 )

/I THISSAMPLE PROGRAM IS FOR ILLUSTRATION ONLY AND MAY NOT //
/l BE SUITED FOR YOUR PARTICULAR PURPOSE. TANDEM COMPUTERS //
/I INCORPORATED DOES NOT WARRANT, GUARANTEE, OR MAKE ANY  //
!l REPRESENTATION REGARDING THE USE OR THE RESULTSOF THE  //

/I USE OF THIS SAMPLE PROGRAM. I

Il I

/I SUPPORT FOR THIS PROGRAM IS NOT AVAILABLE. Il
I I

I I
Il I

Il I

/I DROP TABLE OdbcApi ; I

I I

/I CREATE TABLE OdbcApi I

Il ( I

/I SYS NAME character(16) not null , //
/I USE_DATE character(20) not null , //
// DATA_001 character(08) not null , //
// DATA_002 character(08) not null //

I I
Il Il

) I

I I

I I

I I

#define APPNAME “NonStop Software SDK Sample ODBC Application”
#define COPYRIGHT “Copyright 1997 by Tandem Computers Incorporated.”
#define VERSION “OdbcApi v01.00 “

#include <windows.h> // Windows Header Files

#include <conio.h> // Console I/O functions

#include <sql.h> // ODBC Constants and Functions

#include <sqglext.h> // Microsoft SQL Extensions

#include <stdio.h>

I I

/I OdbcApi is a Windows(R) NT(R) Server Console application designed //
/I to be compiled and built using Microsoft(R) Visual C++ 4.2 I

I I

// Global Application Variables

HDBC hDbc ;
/I ODBC connection handle

ODBC Sample Application for Tandem NonStop® SQL/MX 7 of 20



Source Code Listing for ODBC Sample Application

HENV hEnv ;

// ODBC environment handle
RETCODE  OdbcRetcode ;

// ODBC status code
HSTMT hStmt ;

// ODBC statement handle

char szDbmsName[32] ;
SWORD cbDbmsName ;
char szDbmsVersion[16] ;
SWORD cbDbmsVersion ;
char szOdbcDataSource[32] ;
char szOdbcPassword[16] ;
char szOdbcUserld[32] ;
char szSqlStmt[1024] ;

char szSystemName[24] ;

/*

void ConnectAndinteract () ;

void ReportOdbcError  (HENV,HDBC,HSTMT,HWND) ;

void TwoStepDropDead (PCHAR) ;

I* */

void ConnectAndinteract ()

{

char szAttribute 03[9] ;

ULONG ulAttributeLen_03;

char szAttribute 04[9] ;

ULONG ulAttributeLen_04 ;
USHORT i ;

char szPrimaryKeySysName[17];
ULONG ulPrimaryKeySysNamelLen ;
char szPrimaryKeyDateTime[21];
ULONG ulPrimaryKeyDateTimelLen ;

8 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

* ALLOCATE AN ODBC CONNECTION *

K e */
OdbcRetcode = SQLAIllocConnect ( hEnv
&hDbc) ;

if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLAllocConnect() Failed!" ) ;

Return to walk-through.

/* *

* CONNECT TO ODBC_API DATA SOURCE *

OdbcRetcode = SQLCo/nnect (hDbc ,
szOdbcDataSource ,
SQL_NTS ,
szOdbcUserld
SQL_NTS ,
NULL ,
0 )

if( (SQL_SUCCESS 1= OdbcRetcode )
&&( SQL_SUCCESS_WITH_INFO != OdbcRetcode ) )
TwoStepDropDead ( “OdbcApi SQLConnect() Failed!”) ;

Return to walk-through.
/* *
* GET NAME OF DATABASE MANAGEMENT SYSTEM *
* */
OdbcRetcode = SQLGetInfo ( hDbc ,
SQL_DBMS_NAME )

szDbmsName ,
(SDWORD)sizeof(szDbmsName) ,
&cbDbmsName );

_strupr ( szDbmsName ) ;

OdbcRetcode = SQLGetInfo ( hDbc
SQL_DBMS_VER ,
szDbmsVersion ,
(SDWORD)sizeof(szDbmsVersion) ,
&cbDbmsVersion );

_strupr ( szDbmsVersion ) ;

cprintf ( “DBMS is %s version %s\n” ,

szDbmsName

szDbmsVersion );

ODBC Sample Application for Tandem NonStop® SQL/MX

9 of 20



Source Code Listing for ODBC Sample Application

Return to walk-through.

I* *

* ALLOCATE AN ODBC STATEMENT HANDLE *

* */

OdbcRetcode = SQLAIllocStmt ( hDbc
&hStmt) ;
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLAllocStmt() Failed!” ) ;
Return to walk-through.

J¥ e *

* EXECUTE A DELETE STATEMENT *
K e */
sprintf ( szSqlStmt ,

“DELETE FROM schema.OdbcApi WHERE SYS_NAME = ‘%s™ ,
szSystemName );
OdbcRetcode = SQLExecDirect ( hStmt
szSqlstmt
SQL_NTS );
if ( (SQL_SUCCESS 1= OdbcRetcode )
&&( SQL_NO_DATA_FOUND != OdbcRetcode ) )
TwoStepDropDead ( “SQLExecDirect() DELETE Failed!”) ;

for (i=1;i<11;i++){
Istrcpy ( szPrimaryKeyDateTime
“12-07-1941 08:01:30") ;
sprintf ( szSqlStmt ,
“INSERT INTO schema.OdbcApi VALUES (‘%s’, ‘%s’, ‘AAAAAA00’, ‘BBBBBB00')",
szSystemName ,
szPrimaryKeyDateTime )
OdbcRetcode = SQLExecDirect ( hStmt
szSqlStmt ,
SQL_NTS );
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLExecDirect() INSERT Failed!" ) ;

}

10 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

/* __________________________ *

* EXECUTE A SELECT STATEMENT *

* *
__________________________ /

sprintf ( szSglStmt
“SELECT * FROM schema.OdbcApi WHERE SYS_NAME = ‘%s™,
szSystemName );
OdbcRetcode = SQLExecDirect ( hStmt
szSqlStmt ,
SQL_NTS );
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLExecDirect() SELECT Failed!” ) ;
Return to walk-through.

': BIND THE RESULT SET COLUMNS *
OdbcRetcode = SQLBindCol ( hStmt

1

SQL_C_DEFAULT

szPrimaryKeySysName ,

sizeof ( szPrimaryKeySysName ) ,

&ulPrimaryKeySysNamelen );
if (SQL_SUCCESS!= OdbcRetcode )
TwoStepDropDead ( “SQLBIndCol() #1 Failed!” ) ;
OdbcRetcode = SQLBindCol ( hStmt

2

SQL_C_DEFAULT

szPrimaryKeyDateTime ,

sizeof ( szPrimaryKeyDateTime ) ,

&ulPrimaryKeyDateTimeLen );
if (SQL_SUCCESS!= OdbcRetcode )
TwoStepDropDead ( “SQLBIndCol() #2 Failed!” ) ;
OdbcRetcode = SQLBindCol ( hStmt

3 ,

SQL_C_DEFAULT

szAttribute 03 ,

sizeof ( szAttribute_03) ,

&ulAttributeLen_03 );
if (SQL_SUCCESS!= OdbcRetcode )
TwoStepDropDead ( “SQLBIndCol() #3 Failed!” ) ;

ODBC Sample Application for Tandem NonStop® SQL/MX

11 of 20



Source Code Listing for ODBC Sample Application

OdbcRetcode = SQLBindCol ( hStmt
4 )
SQL_C DEFAULT
szAttribute_04 ,
sizeof ( szAttribute 04) ,
&ulAttributelen_04 );
if (SQL_SUCCESS!= OdbcRetcode )
TwoStepDropDead ( “SQLBindCol() #4 Failed!” ) ;

Return to walk-through.
/* _________________________ *

* FETCH THE RESULT SET ROWS *

while ( SQL_SUCCESS == OdbcRetcode )

{
OdbcRetcode = SQLFetch (hStmt) ;
1*
if (SQL_SUCCESS == OdbcRetcode )
cprintf ( “fetching %s : %s : %s : %s\n”,

szPrimaryKeySysName

szPrimaryKeyDateTime
szAttribute_03 ,
szAttribute_04 );

Il */

if ( (SQL_SUCCESS 1= OdbcRetcode )

&&( SQL_NO_DATA_FOUND != OdbcRetcode ) )
TwoStepDropDead ( “SQLFetch() failed” ) ;

}
Return to walk-through.

/* *

* FREE THE ODBC STATEMENT HANDLE *

* *

* Close its cursor so that the *
* statement handle can be reused *

* */

OdbcRetcode = SQLFreeStmt ( hStmt
SQL_CLOSE) ;

if (SQL_SUCCESS != OdbcRetcode )

TwoStepDropDead ( “SQLFreeStmt() CLOSE Failed!” ) ;

12 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

£, *

* SUBMIT 10 UPDATE STATEMENTS *
® e */

for(i=1;i<11;i++)
{
sprintf ( szSglStmt

“UPDATE schema.OdbcApi SET DATA_001 = 'AAAAAA%O02hu’, DATA_002 =" BBBBBB%02hu’ WHERE SYS_NAME =

‘%s™,
i
i
szSystemName
)
OdbcRetcode = SQLExecDirect (hStmt
szSqlStmt
SQL_NTS );

if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLExecDirect() UPDATE Failed!”) ;

}
/%

end of “for (i=0;i<11;i++)"
*

/* *
* FREE THE ODBC STATEMENT HANDLE *
* */
OdbcRetcode = SQLFreeStmt ( hStmt
SQL_DROP) ;
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLFreeStmt() DROP Failed!” ) ;

L *

* DROP THE ODBC CONNECTION *

OdbcRetcode = SQLDisconnect ( hDbc ) ;
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLDisconnect() Failed!” ) ;

ODBC Sample Application for Tandem NonStop® SQL/MX 13 of 20



Source Code Listing for ODBC Sample Application

* FREE THE ODBC CONNECTION *

OdbcRetcode = SQL FreeConnect ( hDbc ) ;
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLFreeConnect() Failed!”) ;

I* */

void ReportOdbcError (HENV henv
HDBC hdbc ,
HSTMT hStmt ,
HWND hwnd )

UCHAR SqlState[6] ;

SDWORD pfNativeError ;

UCHAR szRawErrorMsg[SQL_MAX_MESSAGE_LENGTH] ;
UCHAR szErrorMsg[SQL_MAX_MESSAGE_LENGTH+22] ;
SWORD pchErrorMsg ;

CHAR *X*y;

short z;

SQLError ( henv ,
hdbc ,
hStmt ,
SqlState ,
&pfNativeError ,
szRawErrorMsg ,
SQL_MAX_MESSAGE_LENGTH ,
&pcbErrorMsg );

for(z=0;z<sizeof(szErrorMsg);z++)
szErrorMsg[z] = \0' ;

X = &szRawErrorMsg|[0] ;

y = &szErrorMsg[0] ;

do {
*y = *X++
ii(T==")

14 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

{
YT
Yy =\’
}
y+=1;
}
while (Istrlen(szRawErrorMsg)>(x-&szRawErrorMsg[0])) ;

Istrcat(szErrorMsg,\nSQL_STATE=") ;
Istrcat(szErrorMsg,SqlState) ;
MessageBox ( hwnd ,
szErrorMsg ,
“ODBC Error Detail” ,
MB_ICONINFORMATION ) ;

}
I* */
void TwoStepDropDead ( PCHAR szErrMsg )
{
MessageBox ( NULL ,
szErrMsg ,
“ODBC Error” ,
MB_ICONEXCLAMATION ) ;
ReportOdbcError ( hEnv ,
hDbc ,
hStmt ,
NULL );
ExitProcess (2) ;
}
I* */

main (int argc |,
char * argv[] )

ODBC Sample Application for Tandem NonStop® SQL/MX

15 of 20



Source Code Listing for ODBC Sample Application

USHORT m;

SetConsoleTitle (APPNAME) ;

[*--< PRINT EXECUTABLE FILE NAME
*
/

cprintf ( “Executing %s\n” ,
argv[0] )

[*--< DISPLAY EXECUTABLE FILE APPLICATION & VERSION INFORMATION
*
/

cprintf (APPNAME “\n") ;
cprintf ( COPYRIGHT “\n”) ;

[*--< GET NAME OF NT SYSTEM

Istrcpy (szSystemName , “ECAL");
cprintf (“\nRunning on \\W\%s\n" ,
szSystemName );

/*--< OBTAIN DATA SOURCE, USER ID, AND PASSWORD
*
/

if (3==argc)
{
Istrcpy ( szOdbcDataSource
argv[1] )
Istrcpy ( szOdbcUserld ,
argv2] )
Istrcpy ( szOdbcPassword ,
argv[3]  );
cprintf (“\n Data Source = %s\n Userld =%s\n Password = %s\n”",
szOdbcDataSource,
szOdbcUserld,
szOdbcPassword) ;
}
else
{

cprintf ( “\nSyntax: OdbcApi <Odbc Data Source Name> <Odbc User Id> <Odbc Password>\n\n") ;

16 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

cprintf(“ \nPress any key to exit ...\n") ;
getc (stdin) ;
ExitProcess (1) ;

}

[*--< ALLOCATE AN ODBC ENVIRONMENT
*

OdbcRetcode = SQLAllocEnv ( &hEnv) ;
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLAIllocEnv() Failed!”) ;

[*--< DO IT

cprintf ( “\nExample showing Basic ODBC APIs \n") ;

ConnectAndIinteract (m) ;

/*--< FREE THE ODBC ENVIRONMENT
*
/

OdbcRetcode = SQLFreeEnv ( hEnv) ;
if (SQL_SUCCESS != OdbcRetcode )
TwoStepDropDead ( “SQLFreeEnv() Failed!” ) ;

[*--< AND NOW WE'RE DONE

*/

cprintf(* \nPress any key to exit ...\n") ;
getc (stdin) ;

return FALSE ;
}

1 1
1 1
/I THIS PROGRAM IS PROVIDED TO CUSTOMERS OF TANDEM COMPUTERS //

ODBC Sample Application for Tandem NonStop® SQL/MX 17 of 20



Source Code Listing for ODBC Sample Application

/I INCORPORATED FOR EDUCATIONAL PURPOSES ONLY. 1

1 1

/I THIS SAMPLE PROGRAM IS FOR ILLUSTRATION ONLY AND MAY NOT //
// BE SUITED FOR YOUR PARTICULAR PURPOSE. TANDEM COMPUTERS //
/I INCORPORATED DOES NOT WARRANT, GUARANTEE, OR MAKE ANY  //
/I REPRESENTATION REGARDING THE USE OR THE RESULTSOF THE  //

/I USE OF THIS SAMPLE PROGRAM. I

I 1

/I SUPPORT FOR THIS PROGRAM ISNOT AVAILABLE. 1

I 1

1 I
I

* Kk *

Trademark Notice

Tandem, Atalla, Every Second Counts, Himalaya, Integrity, iTP, NonStop, Object Rela-
tional Data Mining, Reliability No Limits, ServerNet, Tektonic, The Cluster Is The
Computer, the Tandem logo, and other Tandem marks referenced herein are either regis-
tered trademarks or trademarks of Tandem Computers Incorporated in the United States
and/or other countries.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of
Microsoft Corporation in the United States and/or other countries. TUXEDO isaregis-
tered trademark of Novell, Inc., exclusively licensed to BEA Systems, Inc. UNIX isa
registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd. All other brand and product names are trademarks or
registered trademarks of their respective companies.

Copyright (C) 1997, Tandem Computers Incorporated
Restricted to use in connection with Tandem products and systems. All
rights reserved.

Warranty Disclaimers

THE INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” WITHOUT
ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND, INCLUDING WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

18 of 20 ODBC Sample Application for Tandem NonStop® SQL/MX



Source Code Listing for ODBC Sample Application

OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY. IN NO EVENT
SHALL TANDEM BE LIABLE FOR ANY DAMAGES WHATSOEVER, INCLUD-
ING, WITHOUT LIMITATION, SPECIAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA, OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF THE USE OF THE
MATERIALS, EVEN IF TANDEM HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT EXCLU-
SIONS OR LIMITATIONS ON LIABILITY FOR CONSEQUENTIAL OR INCIDEN-
TAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

ODBC Sample Application for Tandem NonStop® SQL/MX 19 of 20



Source Code Listing for ODBC Sample Application

20 of 20



	ODBC Sample Application for Tandem NonStop® SQL/MX
	1.0 Overview and Summary of Steps
	1. Install and configure the NonStop SQL/MX database. See the NonStop SQL/MX Installation Guide, ...
	2. Install the NonStop SQL/MX ODBC client software (the DLL (dynamic link library) which is inclu...
	3. In targeting one database or another, developers must remember to configure the appropriate OD...
	4. Create a NonStop SQL/MX table using the DDL listed later in this Note (DDL Listing For the Non...
	5. Download the odbcapi.c file from the NonStop Software Developers’ Page or copy from the NonSto...
	6. Compile and link the odbcapi.c file using Microsoft Visual C++ 4.2 (or higher). You’ll be prom...
	7. You can run the program from within the Microsoft Visual C++ environment; using the Run comman...

	2.0 Running the Sample Application
	3.0 About ODBC
	4.0 Walk-through of the Source Code
	1. The application first allocates memory for an environment handle and initializes the ODBC call...
	2. The application then uses the SQLAllocConnect function to allocate memory for a connection han...
	3. Next, the application makes a connection to the data source using the SQLConnect call. The SQL...
	4. Information about the database (ODBC driver, database name, and database version information) ...
	5. Once the connection between the client and server have been established, the application now n...
	6. The SQLExecDirect function takes the SQL string and sends the string to the server to perform ...
	7. To retrieve data after performing the ‘Select’ statement, the application first binds the colu...
	8. To fetch the data the application then calls the SQLFetch function in a loop until all the row...
	9. After the fetch, the statement handle is freed by calling the SQLFreeStmt to close the cursor....
	10. All errors are handled through calls to the SQLError function after any ODBC function fails o...
	11. Just before exiting the application the program frees the environment handle (and releases al...

	5.0 Summary of Key ODBC Calls Used in “odbcapi.c” Sample Application
	6.0 DDL Listing For the NonStop SQL/MX Database Sample Table
	7.0 Source Code Listing for ODBC Sample Application


