BusinessWarg
Connector Programming
Guide

BusinessWare Connec tor SDK Version 1.0
Last updated November 29, 2000

WITRIA

VI TECHNOLOGY, INC

© 1997-2000

Vitria Technology Inc

945 Stewart Drive
Sunnyvale, CA 94086-3912
Phone: (408) 212-2700
Fax: (408) 212-2720

All Rights Reserved.

Vitria, BusinessWare, and Business-in-Realtime are registered trademarks of
Vitria Technology, Inc. eBusinessWare and eBusiness-in-Realtime are
trademarks of Vitria Technology, Inc. All other brand or product names are
trademarks or registered trademarks of their respective companies or
organizations.

This manual, as well as the software documented in it, is furnished under license
and may only be used or copied in accordance with the terms of such license. The
information in this manual is subject to change without notice.

http://www.vitria.com

TABLE OF CONTENTS

Preface v
AUAIENCE. . . . e \;

Related Reading. e Y%
BusinessWare Documentation Set. Vi

How This Guide Is Organized., vii
CoNVENLIONS viii
Contacting Vitria ix
Headquarters iX

Technical SUPPOIt e iX
Documentation. iX

Chapter 1 Introductionto Connectors 1

BusinessWare ConNNeCtOrS. ittt e e 1
ConnectorsasaTypeof Flow............. 2

Connection Models 2

Connectors Bundled with BusinessWare. 3

Packaged Connectors i 4

Custom CONNEBCLOIS . . . o vttt 5

NeXt StEPS . . 5

Chapter 2 Architecture Overview. 7

BusinessWare BasiCS.ttt 7

Metadata RepoSItoryt e 8

The EMT (Error/Messaging/Tracing) Framework. 8

Supporting Infrastructure 9

Error Model (Error Graph) 10

Transaction Architecture i 11

Flow Management 13

Development Architecture i 15

Table of Contents

Chapter 3 Design and Development Guidelines 17
Design Considerationsc.o i e 17
Connector Design Guidelines. 19
Naming standards and Ul Conventions 20
Getting Started 21
Checklist For Developing a Connector. 22
Chapter 4 Creating Java Components for a Connector Flow. 25
Creating the Java components forthe Flow 25
Step 1: Writethe Flow Def 26
Step 2: Writethe Flow Rep. i 27
Step 3: WritetheBeanInfo 35
Java File Summary. 37
Simplified Development using the Connector Generator 37
How to Use the Connector Generator Tool (Wizard) 38
Chapter 5 Writing Java Connectors, 45
Introduction to Java Connector Flows. 45
Writing Code fora Java Connector. 46
Initialize the Connector Flow 47
Start and Stop Processinginthe Flow 48
Code that Sends and ReceivesEvents 50
Checking value of commitAfter_........................... 54
Chapter6 Writing C++ Connectors 55
Introduction to C++ Connector Flows and Flowbridge 55
How the C++ Wrapper Works. 56
Implementinga Flow in C++ 56
Createthe JavaComponents. 57
Call the Wrapper in the Java Code forthe Rep 58
Write a C++ Function that Gets called by the Wrapper 58
Write the Code forthe C++ Flow 60
Chapter 7 Defining Eventinterfaces 65
Overview of Events and Metadata 65

ii BusinessWare Connector Programming Guide

Table of Contents

Overview of IDLand ODL.t e 66
Creating Definition Files that Describe Metadata. 66
Creating Stub Files. 69
Registering and Using Metadata 69
Providing an IDL (or ODL) Generator with Custom Connectors .. .70

Programming Techniques for Working with Events 71

Chapter 8 Writing a Transaction Resource. 75

Overview of Transactions. 75
The Transaction Servicet 76
The Transaction RESOUrCe.t 76
One-phase and Two-Phase Commit Protocols 76

How the Transaction Service Processes Transactions 77
How the Transaction Service Handles Failures. 79

Robust One-Phase Transaction Resources. 80
One-Phase Resources that Implement Status Information 80
One-Phase Transaction Resources without Status Information .. .83

Writing a Transaction Resource foraFlow 85
Write the Transaction Resource., 85
Initializing the Transaction Resource inthe Flow. 87

Methods Available to Transaction Resources 87

Chapter9 HandlingErrors 89

Sending Error Messagestothe Log File 89
Log Levels 89
o T o =T o 90

Using the EMT Framework for LogMessages. 92

Chapter 10 Miscellaneous Developmentlissues 93

Customizing Methods. 93
Writing the Method in the Java Code Editor. 93
Writing the Code Manually. 94
Customizing Methods for the Simple Transformer. 94
Customizing Simple Router Methods. 97
Customizing NestedRouter 98
Multi-threaded Subscriber 98

Request-reply (Synchronous) Processing 99

Table of Contents

Chapter 11 Installing Connectors and Connection Models 101
Creating the Initialization (.ini) File 101
Generating an .ini File By Using Connector Generator 102
Creating an .ini File Froma Java Program................ 102
Installinga Connector. e 108
ConnectorFiles 108
Appendix A Reference. A-1
Java APl Summaryo A-1
Request/Response APl i i A-3
CH+ APILSUMmMary A-5
Simple Translator Interface. i A-5

Glossary G2

iv BusinessWare Connector Programming Guide

Audience

Related Reading

PREFACE

Welcome to théBusinessWare Connector Programming Guitleis guide
describes how to design and implement BusinessWare connectors.

This preface contains the following information:
Audience

Related Reading

BusinessWare Documentation Set

How This Guide Is Organized

Conventions

Contacting Vitria

This book is intended for Java and C++ programmers who will be writing
software components, called connector flows, that enable external systems to be
integrated with BusinessWare solutions. Before reading this book or attempting
to create a custom connector or custom transformer, be sure to explore the
connector flows, transformers, templates, and other facilities that Vitria provides
with the core BusinessWare solution to determine if a connector flow already
exists that may solve the connectivity problem at hand. SeBuisénessWare
Connection Modeling Guidfr information about using the BusinessWare
Console to create new connection models from connector flows and transformers.

For related information on topics in this manual, you may find it useful to refer to
the following manuals:

® BusinessWare Programming Guid&ovides information about the
BusinessWare application programming interface and discusses the tasks
required to create Vitria BusinessWare solutions; includes Java and C++
example code.

Preface

® BusinessWare Programming Referen&a online, hyperlinked reference to

public BusinessWare Java, C++, and IDL APIs, as well as various command-

line programming tools.

Simple Connector Sampl& tutorial that shows you how to write flow source
and a flow target connector. It explains coding the different pieces of a
connector, putting them together, and installing them in the BusinessWare

Console.

EBank Connector Samplan advanced tutorial that shows you how to make
a connector transactional and robust. This sample includes a client/server
banking application; writing a transaction resource; and exception handling.

BusinessWare Documentation Set

Vi

The BusinessWare documentation set consists of the following manuals:

Table 1 BusinessWare documentation

Manual

Description

BusinessWare
Foundations

Explains the concepts underlying the product and
discusses the tools and features used across the
product: BusinessWare Console, XML, access and
revision control, and channels.

If you are new to BusinessWare, you should read thi
manual first.

oY

BusinessWare System
Administration Guide

Discusses administering the BusinessWare and
Communicator servers, including server
configuration, start-up and shutdown, managing
system files, security, federation, and so on.

BusinessWare Process
Modeling Guide

Describes how to model and automate business
processes using BusinessWare Automator.

BusinessWare Process
Management Guide

Describes how to configure audit logging and
persistence to a database. This guide provides
detailed information on audit database tables,
including schema and audit event source.

BusinessWare Task List:

Supervisor’s Guide

Describes how process and activity supervisors
manage performer tasks that have exceeded their
completion deadlines. Topics include reassigning,
releasing, and starting tasks, and terminating
processes.

BusinessWare Task List:

Performer’s Guide

Describes how to use the BusinessWare Task List.
Topics include logging on, viewing your Task List,
starting tasks, reassigning tasks, releasing tasks,
completing tasks, and logging off.

BusinessWare Connector Programming Guide

Preface

Table 1 BusinessWare documentation (Continued)

Manual

Description

BusinessWare Connection
Modeling Guide

Describes how to build connection models using
BusinessWare Connection Modeler.

BusinessWare Metadata
Guide

Describes the role metadata plays in BusinessWare.
Includes topics such as how to create metadata,
manipulate events using metadata, and translate
XML into metadata.

BusinessWare
Programming Guide

Introduces the BusinessWare application
programming interface, discusses the tasks require
to create Vitria BusinessWare solutions, and
provides examples of C++ and Java code.

BusinessWare
Programming Reference

Documents BusinessWare’s Java and C++ public
APIs, as well as various command-line programming
tools.

Migration: BusinessWare
2.2.1to BusinessWare 3.1

Shows how to migrate a BusinessWare 2.2.1 solutio
to BusinessWare 3.1.

Migration: BusinessWare
2.3 to BusinessWare 3.1

Shows how to migrate a BusinessWare 2.3 solutiorj
to BusinessWare 3.1.

Migration: BusinessWare
3.0 to BusinessWare 3.1

Shows how to migrate a BusinessWare 3.0 solutior
to BusinessWare 3.1

How This Guide Is Organized

This book contains 11 chapters and an appendix, as described in Table 2.

Table 2 Contents of This Guide

Section

Contents

Chapter 1, “Introduction to
Connectors”

Provides an introduction to connectors and
connection models, and a glossary of terms|

Chapter 2, “Architecture
Overview”

Provides a description of the connection
model infrastructure and a behind the scene
view of connection models.

Chapter 3, “Design and
Development Guidelines”

Provides connector design considerations.

Chapter 4, “Creating Java
Components for a Connector
Flow”

Describes how to create the user-
configurable pieces of a connector flow and
how to use the Connector Generator Tool to
automatically generate many of the pieces.

vii

Preface

Conventions

viii

Table 2 Contents of This Guide (Continued)

Section

Contents

Chapter 5, “Writing Java
Connectors”

How to write the Java class for a source or

target connector flow. a detailed explanation
of sending and receiving events, saving the
state of connector and transforming events.

Chapter 6, “Writing C++
Connectors”

How to write the C++ class for a source or
target connector flow and use the C++
wrapper (FlowBridge).

Chapter 7, “Defining Event
Interfaces”

Describes event specification in IDL and
ODL and registering metadata.

Chapter 8, “Writing a
Transaction Resource”

Shows how to write a transaction resource
and provides various strategies for creating
robust one-phase commit transaction
resources.

Chapter 9, “Handling
Errors”

Explains error handling, error events, error
codes, logging and log levels.

Chapter 10, “Miscellaneous
Development Issues”

Discusses multi-instancing; nested router;
and customized transformer methods.

Chapter 11, “Installing
Connectors and Connection
Models”

How to install connectors and connection
models using initialization files, templates,
and command-line tools.

Appendix A, “Reference”

Listing of the connector API classes and
methods.

“Glossary”

Definitions of terms used throughout this
guide.

® Monospace

This manual uses the following conventions:

Specifies filenames, object names, and programming code.

Example: User names are located in taémin/users folder.

Italics

Introduces new terminology, highlights book titles, and provides emphasis.

Example: Anoperationis a defined action that is meant to be applied to a

given class of software objects.

BusinessWare Connector Programming Guide

Preface

e Bold
Highlights items.

Example: From the list, select tipgoperties item.

Contacting Vitria

If you have any questions regarding Vitria or any of the Vitria products, please
contact Vitria using the resources listed in this section.

Headquarters

Vitria Technology, Inc.
945 Stewart Drive
Sunnyvale, CA 94086
1-408-212-2700

http://www.vitria.com

Technical Support

Vitria Technical Support provides comprehensive support for all Vitria products
through our Technical Support web site:

http://help.vitria.com (login and password required)
If you need a login for help.vitria.com, please send your request to:
contractadmin@vitria.com

Each customer who has purchased a support contract has two or more designated
individuals who are authorized to contact Vitria Technical Support. If you have
guestions about using the BusinessWare products, please have a designated
person at your site open a case with Vitria Technical Support.

Documentation

If you have any comments on the documentation, please contact the
Documentation group directly:

documentation@vitria.com

We'd like to hear from you!

http://help.vitria.com

Preface

X BusinessWare Connector Programming Guide

INTRODUCTION TO CONNECTORS

The Connector Programming Guidarovides conceptual and technical

information for developers who want to creatnector flowsthe software
components that link external systems to BusinessWare. This chapter introduces
some of the key concepts developers should understand before creating custom
connectors, including definitions of terms such as “connector flows” and
“connection models.” SeBusinessWare Foundatiofsr additional background
information about BusinessWare.

This chapter contains:
® BusinessWare Connectors

® Next Steps

BUSINESSWARE CONNECTORS

BusinessWare is an event-driven publish-subscribe distributed computing system.
That means that for an external system to become part of a BusinessWare solution,
the data with which the external system inherently deals must be provided to
BusinessWare in the form that BusinessWare can understand, that is, as
BusinessWarevents

That's essentially the role of a BusinessWare connector. A connector is a software
component that enables BusinessWare and external systems to interact.
Connectors are software components that can take data from an external system
(external to BusinessWare) and turn the data into BusinessWare events for further
processing, or can receive BusinessWare events and export them to an external
system. Specifically, connectors can be one of three general types:

® A source connectorvhich obtains data from an external system, converts data
into events, and sends events to other flows.

® A target connectoreceives events from other flows and passes the data to the
external system.

® A source-target connectdroth sends and receives events. For the most part,
source-target connectors also translate or transform events, hence they are
typically referred to agransformers

CONNECTORS AS A TYPE OF FLOW

At a lower level, “connectors” describes a particular type of software component
called aflow—an object that can that can receive, process, and send events
because it inherits these specific characteristics from the Vitria Flow class. The
three types of connectors just described are more precisely referred to as three
different types of flows.

Connector flows are not the only type of flowBhannel sourceandchannel
targetsare also flows; these flows communicate with Business\Whasnels—
persistent BusinessWare structures that hold event information. (For more
information, see th8usinessWare Programming Guifi€hannel target flows

and channel source flows inherit their basic characteristics from the ChannelFlow
class. A ChannelFlow communicates with a single channel. A ChannelFlow
object either publishes to a channel (and is thus a target flow) or subscribes to a
channel (and is thus a source flow), but not both.

Multi-threaded subscriber is like a channel source in that it subscribes to a channel
and sends events that it receives from the channel to the next flow in a connection
model, but multi-threaded subscriber enables multiple instances of a connection
model to run concurrently (providing concurrent event processing); multi-
threaded subscriber can dispatch events to different instance8(SieessWare
Connection Modeling Guidi®r more information.)

CONNECTION MODELS

Flows of all types may be connected together into a directed grapearaection
model—to process and distribute events. A connection model transports data, in
the form of events, between end points. An end point might be a BusinessWare
channel, or an external system, such as a database, a file system, or a front office
application.

In fact, flows function only within the context of a connection model; as software
components, they cannot run without the underlying services provided by the
connection model and the associated infrastructure provided by the BusinessWare
runtime environment. Flows package discrete functionality into re-usable
components that business users can customize prior to runtime in the context of a
specific connection model

Connection models and the connector flows and transformers that comprise them
can be manipulated visually in the BusinesWare Console, as shown in the
screenshot.

BusinessWare Connector Programming Guide

Introduction to Connectors

Connection models can include a variety of flow types needed to perform a range
of tasks, from communicating with channels, transforming events, and inspecting
data. In the example below, the lines out connection model includes two end
points, a Line Source Flow and a Channel Target flow. In between are two
transformers, ASCII to String and Format as Payroll.

[#]Businesswiare Console - bw_server #File Example/lines in [B3
Fle Efl Vew Go Commands Hep

Allllems c | Ertormods! | Wodel Propsriies | Permissions | Dtails |
B0y bw_sener —— — ‘ o |
e I 9% 2880 B K 2|r

by Evank New r——

EBankExample
input
output

% source

G target

File Example
channel

ASCIl File to
string

Channel
Target
JJ
=l

Q conectors [Setocted Fow: AScl Fileto Sring
nputs | outputs | Processing

registy Policy for unpracessed interfaces: [Pass trough -

Flow port setting: [~ Input port I outputport

& system ~Simple Transformer Canfig

= updates Transformer class: | com.itia conne ctors fle FieTransiator vl
by MyTeststut
p3 temp Transtormer method:[asciiFieTostring 5|

users
)_Egl“ Administrator ‘Transforner method info: Selected method does not reguire parameters

guest
ifetiod pararmeters. | | EditTiansiorier Glass,

Integrating an external system with BusinessWare often requires two connection
models—one to handle input to BusinessWare (in the screenshot, the “lines in”
connection model that's displayed in the Console) from the external system, and
one to handle input from BusinessWare to the external system (the “lines out”
connection model).

CONNECTORS BUNDLED WITH BUSINESSWARE

BusinessWare is bundled with several source connector flows, target connector
flows, and transformers. These are installed when BusinessWare is installed; you
can access them through the BusinessWare Console. Business analysts,
developers, and others can incorporate these as needed in their own connection
models.

In addition, BusinessWare includes sevexahnection model templatespre-

wired connection models with some basic combinations of connector flows,
transformer flows, and channels that can be used as starting points for creating
new connection models.

For example, the File to Channel template, available in the Console, provides a
File Source flow, a Simple Data Transformer, and Channel Target flow, all wired
together in the Connection Modeler, ready for configuration.

Here are brief descriptions of some of the connector flows, transformers (source-
target flows), and transformation tools included with BusinessWare:

® The File Source connector is a source flow connector. The File Source
Connector retrieves files from a file system and creates events using the file
system data. It does not receive events from other flows.

® The File Target connector is a target flow. The File Target connector receives
events from another flow and writes the event data out to files in the file
system. It does not send any events to other flows.

® The Simple Data Transformer is a source-target flow. The Simple Data
Transformer receives events, transforms them into different types of events,
and sends the transformed events to another flow (or to other flows). (Source-
target flows don’'t have to transform events, but they usually do.) More
specifically, the Simple Data Transformer accepts a class and a method name,
and calls that method when it receives events. It takes the return value from
the method, and sends it to its target list of flows (the list of flows that receive
events from the Simple Data Transformer).

e The RDBMS connector is a source-target flow. It can transform events, but it
often just moves events through a connection model in some way. For
example, the RDBMS connector can obtain a result set from an external
system and then publish the result set onto a channel, without any
transformation.

® BusinessWare Transformer— A comprehensive GUI tool that provides
numerous built-in features. Vitria recommends using this for most all your
data and event transformation needs.

® Spreadsheet Transformer — Transforms events using a spreadsheet to define
transformation rules.

These are just some of the many connector flows and transformers bundled with
BusinessWare. See tlBisinessWare Transformer Guidrd theBusinessWare
Connection Modeling Guidi®r complete information about using these
connectors and transfomers in the context of connection models.

PACKAGED CONNECTORS

In addition to bundled connectors, Vitria also offers special optional packaged
connectors designed to integrate enterprise application suites, database
management systems, such as Oracle, SQL Server, PeopleSoft, SAP and a wide
array of other software. New connectors are being released frequently; see Vitria's
web site for a current list.

BusinessWare Connector Programming Guide

Introduction to Connectors

CusTtoM CONNECTORS

NEXT STEPS

In addition to offering bundled and packaged connectors, Vitria exposes several
interfaces and classes in BusinessWare that developers can use to create new
connector flows for external systems or applications not covered by one of these
other two approaches. This guide provides information primarily for creating such
custom source connector flows and target connector flows; in addition, you'll find
some information about transformer (source-target connector) flows.

In addition to the interfaces and classes that you'll use in your own
implementations, Vitria provides several utility programs that will facilitate your
development efforts. You'll find information about these topics throughout the
remainder of this Guide. (See tBeisinessWare Programming Referefme
hyperlinked documentation for Java, C++, and IDL classes and interfaces.)

The EBankJavaSource connector, shown in the connection model in the
screenshot below, is an example of a custom-developed connector:

[#]Businesswiare Console - bw_server /EBankE xample/source [B3
Fle Efl Vew Go Commands Hep

Allllems c | Ertormods! | Wodel Propsriies | Permissions | Dtails |

Sy — Ho B 2&E0 D - B

-y EBankExarmple [T S —
e input EBankJava Channel
Source Target
w» output
& sourse ‘3
G taroet
- File Example

<

o
H
2

5

L3 Administiator | Selected Flow: EBank Java Source
B guest nputs | Outputs | Processing |
Candidate interfaces Outputinterfaces

iy
°
4,

) T

[EBankCannectorEvents

Show candidates in [inis model ¥ Rermioie

Before developing a custom connector flow, developers should review the current
release of th8usinessWare Connection Modeling Guashel explore the options

in the BusinessWare Console to see if a connector flow, connection model, or
template already exists that solves the connectivity problem.

To get started developing, you should:

® Gain an understanding of BusinessWare connector architecture by reading the
next chapter. Refer to tHausinessWare Foundationsanual and the
BusinessWare Programming Referefmeadditional information about the
architecture.

e |Install and configure BusinesWare on your development platform. See the
BusinessWare Installation Guide for Windows fdf details. Se€hapter 3,
“Design and Development Guidelinefr development platform
requirements.

e |Install and step through tHeBank Sample-it takes about an hour—to give
yourself hands-on exposure to all the concepts covered in this guide,
including: writing a flow with calls to external APIs, implementing a
transaction resource, defining events in IDL, and other key topics.

® Review theConnector Certification Guidelines for BusinessWtoe
complete details on ensuring that your connector meets all Vitria
requirements.

BusinessWare Connector Programming Guide

ARCHITECTURE OVERVIEW

Before writing a custom connector, developers should have an understanding of
BusinessWare and connectors from several different frames of reference,
including: how connectors fit into the BusinessWare architecture; how the classes
and interfaces that comprise a connector flow are put together; and from a
functional perspective, what happens at runtime. This chapter addresses these
topics and includes the following sections:

® BusinessWare Basics
® Supporting Infrastructure

® Development Architecture

BUSINESSWARE BASICS

In simple terms, BusinessWare is an event-based distributed computing
environment that builds on CORBA (common object request broker architecture)
and other leading technology infrastructure to provide a platform for business-to-
business application integration. Key components include the Communicator
server, which provides high-speed asynchronous event-based communication
between various BusinessWare components; and the BusinessWare server, which
essentially controls all other servers and processes.

The BusinessWare server (bserv) isa CORBA server that provides naming, access
control, persistence (metadata store), transactions, and activation—the
BusinessWare server starts all other servers, processes, and containers, and
monitors all running processes, including connection models.

The core BusinessWare architecture also includes a comprehensive framework
(EMT Framework) that supports localization and internationalization. See
BusinessWare Foundatiofer complete information about BusinessWare
architecture.

Two areas of the BusinessWare architecture that developers must consider when
they write a custom connector include the repository (metadata store) and the
EMT Framework, as discussed below.

METADATA REPOSITORY

The BusinessWare repository stores (persists) metadata about events; event
information is stored using IDL (interface definition language) or ODL (object
definition language; se&slossary”for definitions of terms).

The BusinessWare repository also stores information about BusinessWare
objects—the flows, connection models, business process, and other objects that
make up a BusinessWare solution. Developers creating new or custom connectors
write these objects during the development process, and then install them in the
repository.

See thaBusinessWare Metadata Guifte more information about metadata. See
Chapter 7, “Defining Event Interface&r information about working with
metadata to create new event type definitions.

THE EMT (ERROR/MESSAGING/TRACING) FRAMEWORK

One basic principal of good software engineering is that text-based messages,
including error messages and text labels, should be separate from the actual
program code. Code designed with this principal in mind is much easier to
maintain and to adapt to different languages or rapidly-changing business
requirements.

Adhering to this principal, Vitria provides the Error, Messaging, and Tracing, or
EMT Framework, a complete messaging infrastructure in BusinessWare that
facilitates the efforts of both internal and external developers to deliver highly
portable and easy to localize code. The EMT Framework provides the mechanism
for separating text strings from the actual program code.

Briefly, implementing the EMT Framework involves creating a resource file—a
text file that contains all the text strings for the system fSgare 2-1 on pagé—

and then compiling the file using a special utility program provided by Vitria
(rescomp, or “resource compiler”). The resource compiler generates several other
files that you then compile and link with several other BusinessWare classes,
ultimately producing a shared library file (a .dll or .so) called a “locale bundle.”
This locale bundle essentially comprises a messaging API to which you embed
calls in your connector source code.

BusinessWare Connector Programming Guide

Architecture Overview

To change the text messages (display, error, label, and so on), you simply change
the text in the resource file, regenerate, and re-compile. Resource files map names
to strings, as shown in this example from tBBank Connector Sample

B vtebankconres. txt - Notepad [_[O]x]
File Edt Seach Help
[/ STANDARD Use EWT framework for logging, errors, and labels (all text) =

commonEBankconnector "EBank Connector Common™
EGIN

B
// BEAN
#/ STAMDARD labels capirilize each word
LABEL TORShart “Server I0R File"
#/ STANDARD descriptions use sentence capitalization
LABEL TOrLong “Location of the file containing the server IOR"

// COMMON ERRORS/EXCEFTIONS
EXCEPTION Errarconnecting "Error connecting to EBank serwer!
&l

EEanksourcecannector "EBank Source Connector”
e
//
{{ett “Accountshore "accounc”
LABEL ACCOUNTLONg "The account to pall”
LABEL PollRateshort "Foll Rate"
LABEL FollRatelong "How often to poll (in milliseconds)”
LABEL JavaDisplayName “EBank Java Source
LABEL CPPDisplayName "EBank CPP source”

/£ FLOW MESSAGES
TRACE ImportingBalance “Importing balance”
TRACE CurrentBalance "current balance 15 #1feo"
TRACE ExportingEalance “Exporting balance: mf@n
TRACE Retrisvingealance "Retrieving balance"
EXCEFTION ErrorRetrievingBalance "Error refrieving balance”
TRACE NewBalance "Retrieved new balance: w17@o”
TRACE NoNewEalance "No new balance”
TRACE Pushing "Pushing event"
TRACE CommmitTing "Calling commit"

END

EaankTargetcunnectur "EBank Target Connector"

// BEAN
LABEL JavaDisplayname "EBank lava Target'
LABEL CPFDisplayName "EBank CPP Target”

// FLOW MESSAGES

WARNING UnknownEwent "Ignoring unknown event type: mseo”

TRACE Withdrawing "withdrawing $1Tél from account #sd@o”

EXCEPTION Errorwithdrawing "EFror withdrawing”

TRACE Depositing “Depositing $%1f@1 into account wsdao”

EXCEPTION Errorbepositing "Error depositing

WARNING BalanceNotsupported “"Balance mot suppor-teu on EBank Target Tlow'

£ TRANSACTION RELATED WESSAGES
TRACE TID "XIO = %de
EXCEPTION Er‘r‘or‘Fr"EpaHng exception recetved wiile preparing to commnt’

CE Commi tsucceeded “Commit succeeded for xid

CCerTIon CommEra) Ted corrmn: T ea Far ke d s
ERROR Insufficientfunds "Insufficient funds to cummete transaction %den”
EIRRDR unknownTransaction "Unkmown Transaction sdeo”

E)

|

Figure 2-1 Resource Text File for EMT Framework

For information about creating the text file, see BusinessWare Programming
Guide Chapter 23, Error, Message, and Tracing Framework.

SUPPORTING INFRASTRUCTURE

Connector flows are software components that inherit many basic characteristics
from the Vitria flow and connector APIs. A flow can receive, process, and send
events; depending upon which of these functions a flow performs, it will be a
source, target, or source-target flow.

Flows operate in the context of a connection model; connection models run in
container servers, provided by the BusinessWare server (bserv). When a
connection model is started, bserv instantiates a container server in which to run
the connection model (if one is not already started); bserv also creates a Flow
Manager, which is an object that controls all the flows that comprise a connection
model. Flow Manager has an associated Transaction Service and an Error-
handling Model. These infrastructure facilities are discussed in this section.

9

ERROR MODEL (ERROR GRAPH)

The connector runtime provides a built-in error model—a flow graph comparable
to a connection model—with every connection model. As shown in the
screenshot, the error model usually consists of an Event logger flow and a StopOn
flow.

® An Event Logger flow converts error messages to events. It passes these error
events to other flows that can take the appropriate error recovery action and
logs messages to any specified log files.

® A StopOn flow is a Simple Data Transformer flow. By default, it is set to stop
the connection model when specified errors occur.

The architecture makes no assumptions about what actions can occur within this
built-in model; the model designer (business analyst, other users) must customize
the error model to enforce the appropriate error-handling policies.

¢} Businessware Console - bw_server /EBankE xample/New Connection Model [_[O]x]
File Edit “iew Go Commands Help

[l frems x| |[connertion Model | ErrurMudel] Wodel Properies | Permissions | Detalls |
B4 brsener HE 2D 40 B K~ =l |
8- admin
B+ EBankExample
G Mew Connectio.. “-‘.‘ DiagEventsintedace
| LoggeEventsinte face
B (] local Event logger |
B[temp /
B+ users)
® [guest DiagEvenEmagtace e

L Eventsints L
B (] kwiseth et ctopon |

< |
Selected Flow:
Inpu|s] Oumulﬂ Pmcessmﬂ

L

Figure 2-2 Error Model as displayed in the BusinessWare Console

BusinessWare Connector Programming Guide

Architecture Overview

Specifically, business analysts or other end-users can change the settings for
Event logger and StopOn flow, delete them, or add new flows to the error model.
They can set the StopOn flow to RestartOn, AbortOn, or SkipOn specific events.
(RestartOn will stop the connection model for a period of time and then restart.
AbortOn will abort the current transaction but will not stop the connection model.
SkipOn ignores a specified event; for instance, you might use SkipOn for an
innocuous event that you aren’t handling in your regular model but don’t want to
stop or abort processing because of the event.)

Furthermore, developers can write custom methods to handle error events as they
see fit. For details, s¢€ustomizing Methods” on page 93.

To send errors to the error model from a custom connector flow, developers must
write error-handling code by calling the Logger interface as discuss&am
Levels” on page 89

TRANSACTION ARCHITECTURE

The BusinessWare platform includes an embedded transaction service that
manages and coordinates transactionsafAsactionis a logical unit of work in
which multiple changes to distributed databases (or other resources) all occur or
none occur.

By definition, the resources involved in transactions must maintain their “ACID”
properties; that is, the transactiorei®mmic(all or nothing, as just described).
Furthermore, data on all resources must alwaysdmsistentregardless of
whether the transaction commits or aborts. Multiple transactions running
concurrently on the same set of resources must occur assifletion And

finally, once a transaction commits, changes to the resources involved must be
durable regardless of any system failure after that point. (Sleapter 8, “Writing

a Transaction ResourcahdBusinessWare Foundatiofigr additional

information about transactions.)

The two-phase commit protocol is a way to coordinate the participants in a
distributed transaction so that the resources involved in a transaction maintain
these characteristics (atomicity, consistency, isolation, durability). Transaction
services typically implement this protocol through a transaction manager that
coordinates all the resources involved in a transaction by by means of a ‘pre-
commit’ phase: in essence, all resources can tentatively make changes before
committing.

Every connection model inherently has a transaction service associated with it. To
use the transaction service, developers must creed@saction resource-a-Java

or C++ class associated with the flow that implements the specifics of the external
API's transactional semantics.

11

12

Developers create a transaction resource for any flow that will engage in
transactions. The transaction resource acts as an interface between the
BusinessWare transactions and the external system’s transactions. The transaction
resource contains all the logic to commit or abort transactions on the external
system.

Transactions in BusinessWare are implicit: Unlike other transaction processing
systems that may require explicit commands to start or end a transaction,
BusinessWare starts a new transaction automatically for each and every
connection model whenever:

® a connection model is started
® atransaction is aborted

® a transaction is committed

The transaction service supports one-phase transactions as well as two-phase
transactions, so if the external system doesn’t support two-phase commit protocol,
you can still include the external system in transactions.

SeeChapter 8, “Writing a Transaction Resourdef detailed information about
implementing support for transactions in a connector flow and for additional
details about one-phase and two-phase transaction resource implementations.

BusinessWare Connector Programming Guide

Architecture Overview

FLOW MANAGEMENT

Two or more flows that are wired together comprise a connection model (also
referred to as a “flow graph,” or simply “model” or “graph”). A connection model
can be as simple as a single source flow and a single target, or may comprise
numerous flows and transformers.

Source Connection Model

source transformer channel
connetor * flow target ey

flow flow
(connector) (publisher) channel

Target Connection Model

External
System
target transformer channel
connector flow * source «
flow flow _
(connector) (subscriber) channel

Figure 2-3 Canonical Connection Models

The figure shows two generalized connection models, one that picks up events
from an external system (by means of a source flow) and one that sends events to
an external system, by means of a target connector flow.

Events are moved into a connection model in one of two ways: asynchronously,
using an underlying ‘push’ mechanism; or synchronously, using an underlying
‘request-reply’ mechanism. Either way, within the connection model, events are
synchronously pushed from flow to flow, from the source connector flow to the
ultimate target. The last flow in the model returns back to the source. Here's a
more detailed description:

1. The first flow in the model receives the event, perhaps from a channel or an
external trigger. It then calls its ondoPush() method to deliver this event
to the next flow in the model.

2. The next flow receives the event, processes it, and calls itsdoRush()
method.

13

3. When the event reaches the last flow and it has successfully processed the
event, each flow returns until the origindbPush() call of the source flow
returns.

4, At this point, because the event has successfully traversed the entire
connection model, the source flow can aa@immit() on the Transaction
Service (if the commitAfter_ parameter (boolean) was set to true.) This is
typically done within the source flow'doPush() method.

The transaction service then launches into its two-phase (or one-phase, or mixed
two-phase and one-phase) logistics with all the transaction resources that it has
from this model. Se€hapter 8, “Writing a Transaction Resourdef additional
information about transaction processing in the context of a BusinessWare
connector.

Also behind the scenes, some of the the key software components that work
together to provide functionality across a connection model include:

® The Flow Manager, the object in charge of the connection model. Each
connection model has its own flow manager.

® The Flow Environment (Flow Env), a mechanism controlled by the Flow
Manager that holds references to the key services provided by BusinessWare
infrastructure, including:

m Transaction Service (described‘ifransaction Architecture” on page L1

m Logger, which is used by flows in the connection model to log errors and
messages and send them to log files and elsewhere (including the Event
Model).

The Flow Manager wires the runtime flows together in the same way as the reps
were wired together

® The flow adds a transaction resource to the Transaction Service. The
transaction resource implements the required methods for participating in
transactions.

® When the flow calls the Transaction Service to commit or abort a transaction,
the Transaction Service calls the methods in the transaction resource to
commit or abort.

The services provided by BusinessWare to connection models are passed as a
reference in the Flow Env. (Transaction Service and Logger aren’t the only
services, but they're typically the only services at this time that developers need
to specifically consider in the code they write.) At runtime, the Flow Manager
passes the Flow Env from flow to flow inside a specific instance of a connection
model, and the flow obtains the references it needs.

BusinessWare Connector Programming Guide

Architecture Overview

DEVELOPMENT ARCHITECTURE

The flow itself is implemented by means of several different files:

The connector definitiondgf), a Java interface that contains method
signatures to set and get any user-configurable properties (any information
that a business analyst must enter before starting the connection model).

The connector representatiaey), a Java class that handles and stores the
properties listed in the def (implements the get and set methods) and creates
the flow when the connection model is started. The rep also implements
methods to import and export configuration information to and from the
BusinessWare repository.

Theflow, a Java (or C++ class) in which all of the work of connecting to the
external system and sending and receiving information is accomplished. The
Flow implementation contains the code for starting and stopping, and for
sending or receiving events from the external system. It's in the code for the
flow that you'll invoke calls on the external API; add a transaction resource to
the transaction service (if appropriate for the flow), and refer to the logger.

A Beanlnfo classhat defines more user-friendly display information for the
BusinessWare Console about the properties in a flow, such as property names
and descriptions.

The relationships among the def, rep, rep Beaninfo, and flow files, and the Flow’s
location within a connection model is shown in this figure:

Definition

Representation
r

t”

Source Connection Model

|
source transformer
o connector . flow .‘ <hannel "
-— aas e = flow (source- target flow channel

(connector) target flow) (publisher)

Target Connection Model
External
System o "]
transformer channel
= target _ flow h source

connector
flow

flow
(subscriber)

— - D e s e ey channel

Figure 2-4 Def, Rep, Beanlnfo, and Flow in context of connection model

15

16

When a connection model starts for the first time, bserv starts a Flow Manager;
Flow Manager coordinates and manages the creation of all flows in any given
connection model in the same general way, as described below:

1. Flow Manager creates the Reps for all flows in the connection model, starting
with the Reps in the Error Model before moving to the Reps in the main model
(connection model). Flow Manager sends the Flow Env to each Rep.

2. Flow Manager tells the Reps to read their propery values (import them) from
the repository, which stores either the default values (for a new connection
model) or the values that were last saved by a user of an existing connection
model.

3. Flow Manager calls createFlow on the Rep.

4. The Rep creates the flow (passing it the Flow Env) and calls the flow’s
init() method.

5. The flowiniatializes itself, creating a transaction resource (if appropriate), and
passing the resource to the transaction service.

6. The Flow Manager callstartEvents() on each flow, first in the error
model and then in the main model. It begins with the last target flow and works
backwards to the first flow source.

7. The flow connects to the external system (insidedtagtEvents()
method). The flow handles events and data transfer with its external system.

8. Flow Manager calls stopEvents on each flow.

9. The flow disconnects from the external system (insidestopEvents()
method).

All these activities occur within the context of a connection model. If any flow in
the model throws an error startEvents() , the Flow Manager works back
through the connection model and caltspEvents() on all flows. If no

errors are returned, the connection model is up and running; a green light is
displayed in the Console namespace.

If there are errors, an error message displays and the small icon of the connection
model (displayed in the Console namespace) turns yellow or red. (In addition,
information about the error may be saved to the log files.) (SeBtissnessWare
Connection Modeling Guidend theBusinessWare System Administration Guide
for details about runtime operations and other details from an end-user (business
analyst) perspective.)

BusinessWare Connector Programming Guide

DESIGN AND DEVELOPMENT GUIDELINES

This chapter provides information about design considerations for connectors.
Topics include:

® Design Considerations

® Getting Started

DESIGN CONSIDERATIONS

Designing a BusinessWare connector for an external system starts with a thorough
analysis of the external system. You must learn everything you can about its
characteristics because much of the work of creating a new connector involves
making calls to the external API in your code, and turning the external data into
BusinessWare events.

Here’s a list of questions you should consider as you begin examining the external
system:

o \What kind of external system is it, and what are its basic characteristics? Is it
a database, a file system, or a front-office application? Knowing the type of
system to connect to will help determine the method to use in communicating
with the system and the required API calls.

® \What are the characteristics of the external system’s API? Specifically,

m Does the API support asynchronous or synchronous (request/reply)
communications? For example, can the API notify the connector
asynchronously when data has changed, or will the connector have to poll
the system for changes?

m Does the API return data (that can be used by a target connector to publish
an event, making it a source-target flow)?

m Does the API support C++ or Java?

m Is the API thread-safe? If so, does it make sense to support multi-
instancing in the connector?

m Does the external system support transactions, and if so, does the system
implement a one-phase or a two-phase commit protocol?

17

18

m How are transactions demarcated in the external system?
m How are transactions committed or aborted in the external system?

The characteristics of the external system will determine how the connector
you create receives signals about changes to data, how it retrieves the changed
data, how it modifies events in the third-party system, and how it will
implement commits and aborts in the transaction resource.

With an understanding of the characteristics of the external system, you can
start addressing questions specific to BusinessWare:

Does the API provide access to metadata, and if it does, should you provide an
IDL/ODL generator with your connector?

How should you define the events? What type of data does the external system
provide? Will the connector need to process email messages, sales orders,
customer information, or raw data streams? Identify the type of data so that
you can group the data type into events. Which will be the most appropriate
way to model the events? IDL or ODL?

Which type of connector is needed for your integration challenge? Do you
need to create a source connector, target connector, or source-target
connector? A source connector retrieves information from an external system,
a target connector enters information into an external system, and a source-
target connector both enters and retrieves information.

What type or required or optional input is needed from connector users
(business analysts or others who will interact with the connector)? Will users
need to enter a database instance name or machine name to connect to a
database? Will business users need to be able to configure polling frequency,
or number of events to process before a commit?

The information the user inputs will be turned into properties that the user sets
through the BusinessWare Console on the flow property sheets.

For example, the API that's exposed to developers in the EBank example
comprises three methods—balance, deposit, withdraw—as shown in this code
excerpt:

public interface EBankCommands extends

com.vitria.fc.object.Obj {

double balance(int account);

void deposit(int account, double amount);

BusinessWare Connector Programming Guide

Design and Development Guidelines

void withdraw(int account, double amount);

CONNECTOR DESIGN GUIDELINES

By their very nature, external systems are beyond the control of the connector
developer. To adapt easily to dynamically changing business scenarios, you
should keep these guidelines in mind when you design and create connectors:

Keep event code independent of the external system’s data format—the data
format of the external system could change. For instance, an event could
consist of an object type, an action to be performed on the object, and a list of
name/value pairs that holds the information about the object.

Isolate code with specific tasks into functional components that you can reuse.

Generalize the code you write as much as possible so that upgrades to the

external system don’t require new versions of your connector. For example,
avoid hard-coding names of tables and other external system entities; if you
do, when table or resource names change, you'll have to rewrite your code.
Instead, reference table names dynamically in the connector code.

Connect to the source or target only when the connection model starts (in the
startEvents method); disconnect when the connection model is paused (in the
stopEvents method). Doing otherwise—connecting each time a connector
needs to poll—is both inefficient and non-standard.

Don't read from and write to the external system from the same flow. Avoid
writing source-target connectors that both read from and write to the external
system; this sort of connector design breaks the idea of separate components
and minimizes reuse.

Although you should avoid writing source-target connectors that both read
from and write to an external system, you can create source-target flows that
you can embed within a specific connection model, such as these:

m A source connector that receives events from other flows or other
connection models: For example, you may want to notify a source
connector of new information in the external system by sending it an event.
(The Vantive source connector operates this way, receiving notification
from the RDBMS connector.)

m Atarget connector that sends events on to other flows or models: For
example, a target connector that sends a “success” event once it has
inserted data into the external system.

19

20

NAMING STANDARDS AND Ul CONVENTIONS

Capitalize all Property names (just the first letter in each property hame).
Property names should be short and descriptive—just a couple of words, not
an entire sentence.

Provide a short description (one to three sentences) for each property. This
description should inform a knowledgeable user (a business analyst) the
purpose of the property.

Provide default values for any Property when it makes sense to do so. For
example, if the third-party application for which you're creating the connector
usually runs on IP port 1521, then your Rep should include this default value
for the property.

Check for invalid values when changing a property’s value and throw a
DiagError when appropriate.

Implement custom property editors as needed. Users should only be presented
with valid choices only; to do this, use custom property editors that are
designed to accept legitimate values only.

Use the processing tab to enable editing of properties related to processing or
transformation. Properties that can change the behavior of the connector
(unlike properties, such as name and password, that are more utility than
function) may require a more sophisticated GUI than a property editor. Place
such properties inside the processing tab, or provide modal buttons that
provide dialog boxes.

Provide Wizards when appropriate, such as for those tasks that require users
to follow a predefined sequence of steps. For example, if you want a user to
log in, select some objects in one place and then provide target or destination
information, you can guide them through the necessary steps with a Wizard.

Integrate connector-related GUIs with the console so that users don't have to
run command-line utilities.

Provide appropriate titles to your message boxes in the format
<operation><object>. For example, “Saving Spreadsheet.” Don't use generic
words such as “Error,” Warning, or Information.

Keep the body of the message text in the message box to three (3) complete
sentences or less. If you need more than three sentences, display a short
message and tell the user to look in the logs for more detailed information.

Create a 32x32 pixel icon (in .gif format) for each connector flow you create.

Keep all connector code in a Java package that follows the naming convention
com.YourCompanyNamidameofConnectgor application)

BusinessWare Connector Programming Guide

Design and Development Guidelines

Event Names

Event names should be lower-case for the first word, initial-cap for every word
after that. For example, dateEvent, anotherKindOfEvent, aThirdKindOfEvent.

File Names

Table 3-1 Naming Conventions for Java Files

Resource

Source Flow Target Flow Source-Target Flow
Def namesourceDef namdargetDef namesourceTargetDef
Rep nameSourceRep naméargetRep nameSourceTargetRep
Beaninfo nameSourceRepBeaninfo | namé&argetRepBeaninfo nameSourceTargetRepBeaninfo
Flow namesourceFlow namd argetFlow namesourceTargetFlow
Transaction namesourceResource namdargetResource nameourceTargetResource

GETTING STARTED

Module Names

Use initial capitals on every word; for examphyModule.

As mentioned earlier in this chapter, developers who want to create custom
connector flows should first consult ti@onnection Modeling Guidand ensure
that no connector flow exists to solve their connectivity problem.

For example, the BusinessWare Transformer is a powerful source-target
connector flow that provides many built-in operations that you can use override to
create your own transformations.

If you're a developer who wants to create a new connector flow to integrate
BusinessWare with a specific third-party software package, be sure to review the
Connector Certification Guidelines for BusinessWhreguidelines, packaging
instructions, naming conventions, and the like.

21

Development Platform Setup

Your development environment should include the Java JDK 1.2. Minimum
developer’s workstation requirements include 256-Mbyte of RAM (512-MB
recommended). Install the BusinessWare software on your development system
according to the installation instructions. You'll need a C++ compiler, Java
compiler, and Java Runtime, as well as the BusinessWare software.

The connector APIs are contained in the BusinessWare. jar file, located in the
%VITRIA%\java\win32 (on Windows NT) or $VITRIA/java/sparc_solaris for
Solaris; make sure your CLASSPATH is configured correctly. (If you install the
core BusinessWare platform on your development machine, accepting the
defaults, the CLASSPATH should be set correctly.)

CHECKLIST FOR DEVELOPING A CONNECTOR

Throughout this guide you'll find example code from the EBank Connector
sample, which is installed with BusinessWare. The EBank Connector Sample
includes the external system and an API for that system (a Java banking server
application and a client that can deposit, withdraw, and check account balances).
To facilitate your own understanding of the BusinessWare environment and
connector implementation, Vitria recommends that you install and configure this
sample application. SéeBank Connector Sampfer details.

Developing a connector encompasses three broad sets of development activities,
starting with defining the events that your system will send or receive. To define
the events, you must first examine the external API and identify the data types that
the external system uses, and decide how best to define the data as BusinessWare
events.

Providing transactional semantics for your connector flows will also be a big part
of your development efforts. Although BusinessWare provides a built-in
Transaction Service that automatically starts transactions on the connection model
and that manages the pre-commit, commit, and abort activities on the flow, you as
developer must determine whether your connector flow should have a transaction
resource connected to it, and if so, you must write the transaction resource using
the transactional semantics of the external API.

Thus, before you can do much of anything programmatically, you must focus on
a thorough analysis of the external API and understand its characteristics with
special attention to the concepts of events and transactions. With a firm grasp on
the external API, you can begin defining the events and thinking about the overall
design of the connector flows themselves.

BusinessWare Connector Programming Guide

Design and Development Guidelines

The basic steps for developing connectors are listed below. However, note that
many of these activities are concurrent or dove-tail into each other. For example,
the code for your flow (step 2) will include code for handling events (step 3) and

a reference to a transaction resource (step 3), so thisisn’'t exactly a linear process.
Before attempting to build your own connectors, r&dthpter 2, “Architecture
Overview"to learn about how connectors and other flows work within a
connection model.

1. Design the connector after you analyze the external system, noting especially
the characteristics of the APl and data types that the system use®eign
and Development Guidelines” on pageléfore you get started.

2. Write the connector flow.

a.

Identify the portions of the connector that you can generate by using the
Connector Generator Tool and the portions that you will need to write. See
“Creating Java Components for a Connector Flow” on page 25

Implement the portions of the flow that start, pause, and connect to the
external system, as described'introduction to Java Connector Flows”

on page 45Concurrent with this task, you should define the data interfaces
and event interfaces for the connector. S2efining Event Interfaces” on
page 65

Write code to exchange data with the external system, to send and receive
events, and to transform events, as describ&d/iiting Java Connectors”
on page 45

Identify the errors and exceptions the connector needs to handle, and
implement the methods suggestedttandling Errors” on page 89

3. To ensure reliable data transfer from the external system to the flow, write a
transaction resource to handle transactions as descrili@ditng a
Transaction Resource” on page 75.

4. Install the connector into the BusinessWare environment as described in
“Installing Connectors and Connection Models” on page 101.

The remainder of this guide provides information for performing these steps.

23

24

BusinessWare Connector Programming Guide

CREATING JAVA COMPONENTS FOR A
CONNECTOR FLOW

This chapter guides you through the process of writing the Java code portions of
a connector flow, specifically, the code for the Def, the Rep, and the Beaninfo.
These elements work together to provide a visual component that end-users, such
as business analysts or administrators, can configure as part of a connector model
in the BusinessWare Console as shown in the screenshpagm5.

In addition, you'll see where the actual code for the flow (which is covered in
Chapter 5, “Writing Java Connectorsi Chapter 6, “Writing C++ Connectory”
fits in to this scheme. Topics in this chapter include:

® Creating the Java components for the Flow
m Step 1: Write the Flow Def
m Step 2: Write the Flow Rep
m Step 3: Write the BeanlInfo

e Simplified Development using the Connector Generator

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sample

CREATING THE JAVA COMPONENTS FOR THE FLOW

Writing the code for a connector flow involves writing several basic Java interface
and class files that inherit from several other BusinessWare base classes and
interfaces. You can automate the writing of these files and provide the basic
structure for the flow class itself by using the Connector Generator Tool provided
by Vitria; see"Simplified Development using the Connector Generator” on

page 37or information about using this tool. Even if you choose to use the
Connector Generator Tool—and Vitria recommends that you do so, for
simplicity’s sake—you can read through this section first to see the relationships
among the various files that the tool produces.

25

STEP 1:

If you'll be incorporating data from an external system for which no
BusinessWare event types exist in the BusinessWare repository, you must also
define these events and load them into the repository in order for your code to
generate or receive these events. ‘Tfining Event Interfaces” on page 66r
information.

WRITE THE FLOW DEF

Every connector flow must have a definition, or Def file, that defines the list of
configurable properties that will comprise the flow. The Deffile is a Java interface
file that inherits from one of three specific BusinessWare class files:

® ConnectorSourceDef
® ConnectorTargetDef

® ConnectorSourceTargetDef

If you're creating a source flow, you'll extend the ConnectorSourceDef class; for
a target flow, you'll extend the ConnectorTargetDef; for a source-target flow,
you'll extend the ConnectorSourceTargetDef. All these classes are contained in
thecom.vitria.connectors.common package, so your Def file must start

by importing this package.

NOTE: All the code you write for the flow def, rep, Beaninfo, and the flow itself
should belong to the same Java package. As you'll see from the example code in
this chapter, the package name for all Java code related gBhek Connector
Samplas contained in a package called “jebank” (Java EBank).

As with other Java interface files, the Def file contains abstract methods only—
method headers, including parameters, withoutimplementation. The Deffile’s job
is to provide the list of accessor methods for setting and getting properties on the
flow's property sheet. For each property that you want to expose to end-users,
create a get method and a set method signature in the Def; do not use any of the
reserved words in the table, however.

Table 4-1 Reserved Words

commitAfter name targetEventinterfa
celList
concurrent resolver targetList
logLevel sourceEventinterfa unknownEventFlag
celist

BusinessWare Connector Programming Guide

STEP 2:

Creating Java Components for a Connector Flow

In addition, follow the naming convention for get and set methods, that is, all
lower case “get” or “set” and initial capital for all other words—note
“setPollRate” and “getPollRate” in the listing below.

Here’s a complete example listing of a source flow connector def. As you can see
the file imports the entire com.vitria.connectors.common.* package, and then
continues with the get and set method signatures:

package jebank;
import com.vitria.connectors.common.*;

public interface EBankJavaSourceDef extends
ConnectorSourceDef {

public String getlorFile();

public void setlorFile(String iorFile);
public int getAccount();

public void setAccount(int account);
public int getPollRate();

public void setPollRate(int pollRate);

Once you compile this interface, you can implement its methods in a Rep as
detailed in the next section.

WRITE THE FLOW REP

The Rep (or “representation”) is a Java class that implements the interface in the
Def. The Rep extends the BusinessWare base class appropriate for a source,
target, or source-target flow, respectively. The Rep has several other jobs,
including creating the Flow object, passing the Flow Env to the Flow object,
importing a list of events that the flow can receive, exporting a list of events that
the flow can send, and providing a representation for the flow in the BusinessWare
repository. The next several sub-sections show you how to write code that
supports all these tasks.

Extend the Appropriate Connector Class

Depending on whether the flow will be a source, a target, or source-target
connector flow, the code for your Rep must extend one of the following classes in
thecom.vitria.connectors.common package:

e ConnectorSourceRep

27

28

® ConnectorTargetRep

® ConnectorSourceTargetRep

Here’s an example from the top portion of a Java class that implements the
example shown ifstep 1: Write the Flow DefAs you can see, this Java class
extends th€ConnectorSourceRep class and implements the
EBankJavaSourceDef interface.

package jebank;

import com.vitria.diag.TextMessage;
import com.vitria.fc.io.*;

import com.vitria.fc.flow.*;

import com.vitria.connectors.common.*;

import com.vitria.fc.data.List;

public class EBankJavaSourceRep extends ConnectorSourceRep
implements EBankJavaSourceDef {

Next in the code you must create instance variables for each property in the Rep.
For example, continuing with the EBank example:

protected String iorFile_;
protected int account_;
protected int pollRate_ = 5000;

Implement the get and set Methods

In addition to declaring the instance variables and constants in the Rep class, you
must provide bodies for the methods listed in the Def; here are the
implementations for the siget andset methods listed in EBankJavaSource

Def interface orpage 27

public String getlorFile(){
return iorFile_;

}
public void setlorFile(String iorFile){
iorFile_ = iorFile;

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

}
public int getAccount(){

return account_;
}
public void setAccount(int account){
account_ = account;
}
public int getPollRate(){
return pollRate_;
}
public void setPollRate(int pollRate){
pollRate_ = pollRate;

}

Enable Properties to be Stored in the Repository

The Rep is also responsible for providing methods that will be used at runtime to
store and retrieve the properties in BusinessWare. These are found in the
Exportable interface (located in theom.vitria.fc.io.* package that
was imported into the Rep file).

In addition, the Rep needs a way to reference the Def in the Repository. When the
Flow Manager starts to create the flow, it looks in the Repository for the Def. The
mechanism for this is a constant, in this example, the
“EBANKJAVASOURCETAG,” that locates the appropriate method to create
new instances of this particular flow’s Rep.

Soone taskis to override the getExportFormat() method and return a unique string
of the formcom/my/company/NameOfDefClass:1.0

Here’s the example from the EBank source flow Rep code:

public static final String EBANKJAVASOURCETAG =
"EBankJavaSourceDef:1.0";

public String getExportFormat(){
return EBankJavaSourceRep.EBANKJAVASOURCETAG;

}

29

Override the method void exportTo(com.vitria.fc.io.ExportStream stream) by
first calling super.exportTo(stream); and then exporting all the properties:

public void exportTo(ExportStream stream) throws
ExportException {

super.exportTo(stream);

stream.writeString(iorFile_);
stream.writelnt(account_);
stream.writelnt(pollRate_);

Next, you must override void importFrom(com.vitria.fc.io.ImportStream stream)
by first calling super.importFrom(stream); and then importing all the properties in
the same order that you exported them, as shown in this sample:

public void importFrom(ImportStream stream) throws
ImportException {

super.importFrom(stream);

iorFile_ = stream.readString();
account_ = stream.readint();
pollRate_ = stream.readInt();

In your code, be sure you import the properties in the same order as you exported
them.

The Rep must also provide a reference to a create method; reference to the method
is stored in the repository, and when an end-user clicks on the icon for your
custom flow (in the Flow Palette of the Console), Flow Manager will use the
method to return an instance of the flow Rep (the visual component) in the
Console.

public static EBankJavaSourceDef createEBankJavaSourceDef(){
EBankJavaSourceRep r = new EBankJavaSourceRep();
r.init();
return r;

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

public static EBankJavaSourceDef
createEBankJavaSourceDef(ImportStream s){

EBankJavaSourceRe p r = new EBankJavaSourceRep();
r.init();
return ;

}

Provide Lists of Event Interfaces

Another one of the Rep’s tasks is to provide source and target event interface lists,
if appropriate, to the end user. Target lists are used for event type checking at
runtime. Event interface lists for connectors and transformers are displayed to
show what types of events they can send and receive. The set of events a connector
or transformer can send is called 8wurce listand the set of events it can receive

is called thearget list

® Call createList if you want to enable users to specify different events.

® Call createListReadOnly if you want to prevent users from specifying
different events.

The methods you'll override are in tleem.vitria.fc.data.List
package (which is imported in the top of the Rep file as shown in the listing.)

If the Rep is for a source flow, you must implement the
getSourceEventinterfaceList() method to provide a list of event types
that the flow can send (a source list).

Here’s an example from the EBankJavaSourceRep class that creates a List object
that will contain the list for the flow:

public List getSourceEventinterfaceList(){

String [] eventNames =
{"vtEBankConnectorModule.EBankConnectorEvents"};

return ConnUtil.toEventinterfaceList(eventNames,
resolver_);

}

® For atarget connector flow, you'll override com.vitria.fc.data.List
getTargetEventinterfaceList()

® [or a source-target connector (usually a transformer) implement both
methods.

31

32

To prevent users from editing event types in the Console, use the read only list.

Note the variableesolver_ in the listing above: this handles the switch
between the editable and the registered version of an event. (The registered
version is used by BusinessWare at runtime; the editable version is visible in the
Console.)

Instantiate the Flow

Another important tasks of the Rep is to instantiate (create the instance of) the
Flow itself:

public FlowSource createFlowSource(FlowEnv env){
EBankJavaSource out = new EBankJavaSource();
out.init(this, env);
return out;

To specify the type of flow to create, write one of these methods in the rep:

® For a source flow, you must override com.vitria.fc.flow.FlowSource
createFlowSource (com.vitria.fc.flow.FlowEnv) in the
FlowSourceDef

® [or atarget flow, override com.vitria.fc.flow.FlowTarget
createFlowTarget (com.vitria.fc.flow.FlowEnv) in the
FlowTargetDef interface

® [or a source-target flow, you must override com.vitria.fc.flow.Flow
createFlow (com.vitria.fc.flow.FlowEnv) in thé-lowDef interface

Regardless of which type of flow you're instantiating (source, target, or source-
target), you instantiate the flow and then call init(this, env); on the flow in the
initialization as shown in this code segment from the EBank sample
(EBankJavaSourceRep.java):

public FlowSource createFlowSource(FlowEnv env){
EBankJavaSource out = new EBankJavaSource();
out.init(this, env);
return out;

}

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

If you'll be implementing the flow in C++ (rather than Java), you must create the
flow in the CPPFlow wrapper and return the CPPFlow (you must also import
com.vitria.connectors.flowbridge.*; in the Java file for a Rep that's used in
conjunction with a C++ flow). Here’s an example of the Java code that would
instantiate a C++ version of the flow:

public FlowSource createFlowSource(FlowEnv env){
CPPFlow cppFlow = new CPPFlow(this, env);
cppFlow.setSharedLibName("vtEBank™);
cppFlow.setMethodName("CreateEBankSource");
String [] params = new String[3];

params[0] = "™ + iorFile_;
params[1l] = "™ + account_;
params[2] = "™ + pollRate_;

cppFlow.setParams(params);
cppFlow.init(env);
return cppFlow;

At runtime, this code serves to create an object of the appropriate flow type and
initialize the object.

In addition, the Flow Manager will pass in the Flow Env to the object, to provide
it with the references to flow registry and other infrastructure. The flow can use
theFlowEnv object to access the Flow Controller, Flow Status Update,
Transaction Service, or the Logger

The Flow Manager calls the createFlow method, withFlewvEnv object as a
parameter, to create a new instance of the flow associated with this rep.

In this example, the EBankJavaSource is the flow that gets instantiated (you'll see
the code EBankJavaSource in Chapter 5). After creating an instance of the flow
object named EBankJavaSource, the Flow Env is passed to the flow, and the flow
is returned to the caller (the Flow Manager).

Multi-instance Flows

If the flow will be multi-instanced, you must override the getConcurrent() method
in the Rep, (return true instead of the default false):

public boolean getConcurrent() {
return true;

}

33

34

See“Multi-instance Connection Models” on page 88d sedBusinessWare
Connection Modeling Guidir additional information.

Load the Locale Bundle for the EMT Framework

As discussed iChapter 2, “Architecture OverviewBusinessWare provides a
complete messaging framework that enables developers to keep messages, errors,
user-interface labels, and other text elements isolated from the body of code,
ensuring that their applications can easily be localized to different languages. (See
“The EMT (Error/Messaging/Tracing) Framework” on pagimBmore

information.) The implementation of the framework for a specific application is
called the “locale bundle,” a shared library of message text of all kinds that will

be used by the application. The Rep file must include a static block that loads this
locale bundle, as in this example:

static {
com.vitria.diag. TextMessage.loadBundle("mybundle™);

}

The name of the bundle is the name of the shared library with any version numbers
and suffixes removed. For example, the EBank locale bundle for the Windows NT
platform is a dynamic link library named vtEBankLocale3_o2r.dll; in the code for
the Rep, this is referenced as simply “vtEBankLocale3,” as shown here:

static {
TextMessage.loadBundle("vtEBankLocale3");

}

However, as with any development project, the text of various messages and other
text that you might want to include in the resource file will likely change as you
write and fine-tune your code. For that reason, Vitria recommends using simple
placeholder messages during the development process, and leaving the
implementation of the EMT framework to the end of the process, when you've
fully debugged and completed the connector. BesinessWare Programming
Guidefor information about creating and compiling the resource file.

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

STEP 3: WRITE THE BEANINFO

The Beanlinfo is the last of the Java-specific files you need to create; the Beaninfo
displays the properties, icons, and flow names in the Console for the Rep you
create. The BeanlInfo enables you to present the underlying methods to your end-
users in a more readable (to non-programmers) fashion, as well as provide an icon
to represent what will ultimately be a flow to the user in the Console.

As with the Java source code files you create for the Def and the Rep, the BeanlInfo
must also adhere to specific naming conventions. Specifically, you must prefix the
name “Beaninfo” with the name of the flow Rep itself. For example, if the name
of the Rep is EBankJavaSourceRep, you must name the BeanlInfo class
“EBankJavaSourceRepBeaninfo.” Here's the top portion of the Beanlnfo file for
the EBank source connector:

package jebank;

import com.vitria.fc.data.BeanLib;
import com.vitria.diag. TextMessage;
import java.beans.SimpleBeanlinfo;
import java.beans.PropertyDescriptor;
import java.beans.BeanDescriptor;
import java.beans.Beaninfo;

public class EBankJavaSourceRepBeaninfo extends
SimpleBeaninfo {

You must import the classes from the java.beans package and the two Vitria
packages as shown in the listing, and then you must extend the
java.beans.SimpleBeaninfo class.

Next, override the java.beans.PropertyDescriptor[] getPropertyDescriptors() and
make the appropriate setDisplayName, setShortDescription method calls for each
configurable property that you want to expose to end-users. (Note that in the code
listing below, the names are being handled by the locale bundle.)

public PropertyDescrlptor[] ﬂetPropertyDescriptors(){

if (displ ay_ == nu
display _ = (Beanle getinterfaceProperties(EBankJavaSourceRep.class));
for (int i<display_.lengt |++;i
if (d|sp|ay [|] getName(?equals(|orF|Ie)

35

display_[i].setDisgIa Name(TextMessage.formatMessage(ebanklocale.CommonEBankConn
ectorMessages.lORShort));

display_[i].setShortDescr;gtion(TextMessage.formatMessage(ebanhocaIe.CommonEBan
kConnectorMessages.lORLonQ));

else if (display_[i].getName().equals("account™){

display_[i].setDisplayName(TextMessage.formatMessage(ebanklocale.EBankSourceConn
ectorMessages.AccountShort));

display_][i].setShortDescription(TextMessage.formatMessage(ebanklocale.EBankSourc
eConnectorMessages.AccountLong));

else if (display_[i].getName().equals("pollRate")){

display_[i].setDisplayName(TextMessage.formatMessage(ebanklocale.EBankSourceConn
ectorMessages.PollRateShort));

display_][i].setShortDescription(TextMessage.formatMessage(ebanklocale.EBankSourc
eConnectorMessages.PollRateLong));

36

To set the display name for the flow, you must also override
java.beans.BeanDescriptor getBeanDescriptor() in your
Beanlnfo class:

public BeanDescriptor getBeanDescriptor(){
if (beanDescriptor_ == null){

beanDescriptor_ = new
BeanDescriptor(EBankJavaSourceRep.class);

beanDescriptor_.setDisplayName(TextMessage.formatMessage(
ebanklocale.EBankSourceConnectorMessages.JavaDisplayName)

)

return beanDescriptor_;

To display an icon in the Console, you must override the java.awt.Image
getlcon(int iconKind) method (only 32x32 icons are supported).

public java.awt.Image getlcon(int iconKind){
if (iconKind == BeanInfo.lCON_COLOR_32x32){
return BeanLib.getimage(this, "ebsource.gif");

}

else {

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

return null;

Without this code snippet above, the dollar sign in source connector shown below
would not exist:

EBankConnectarEvents
EBank Java

Source

$> - 32x32 pixel .gif icon

Once you've created the Def, the Rep, and the Beaninfo, you can load these Java
components into the BusinessWare repository to see how things are shaping up,
(as long as you also implement some skeleton code for the Flow). To do so, you
must create an .ini file that loads this flow type in the repository;'sesv to Use

the Connector Generator Tool (Wizard)” on page 38.

JAVA FILE SUMMARY

Table 4-2 Naming Conventions for Developer-created (or generated) Java
Files

Source Flow Target Flow Source-Target Flow
Def namesourceDef namd argetDef namesourceTargetDef
Rep nameSourceRep namé argetRep nameSourceTargetRep
Beaninfo nameSourceRepBeaninfo | namé&argetRepBeanlinfo nameSourceTargetRepBeaninfo
Flow

namesourceFlow namd argetFlow namesourceTargetFlow

SIMPLIFIED DEVELOPMENT USING THE CONNECTOR GENERATOR

The code requirements for a Def, Rep, and BeanlInfo are highly templated and
standardized, which means that they lend themselves easily to being automatically
generated by a programming tool. Vitria provides such a tool, the Connector
Generator Tool, that lets you create these basic Java source code files easily and
quickly. There are two versions of the tool that provide slightly different
functionality:

® Connector Wizard, a graphical user interface wizard
(com.vitria.connectors.generator.ConnectorWizard)

37

38

® Connector Generator, a command line version of the tool
(com.vitria.connectors.generator.Connector Generator.

The Connector Wizard enables you to enter the names for your Java files and
numerous other settings in a graphical user interface; it then generates the
necessary Java (or Java and C++) files for you. In addition, you can save your
entries as a special text-based file (a .gen file), which you can open again later in
the tool (or in a text editor).

Once you have a .gen file, you can use the command-line version of the tool, using
the name of the .gen file as an input argument, and generate all files or selected
files. See’'Using the Connector Generator Tool and the .gen File” on pader42
additional details about the .gen file.

Specifically, both the Connector Generator Tool can automatically generate:
o The flow def (the Java interface createdStep 1: Write the Flow D¢f
® The flow rep (the Java class file createddtep 2: Write the Flow Rép

o The flow’s Beanlinfo object created Btep 3: Write the BeanInfavhich
controls property display in the BusinessWare Console property sheet

® A base class for the flow and a companion helper class (you'll need to fill-in
the specifics as discussediimroduction to Java Connector Flowsthe next
chapter)

® Aninitialization (ini) file for the connector (to load the connector flow into
the Console; se€hapter 11, “Installing Connectors and Connection
Models.”

Once you've generated the helper files and the skeleton of the flow, you can then
complete the implementation of the flow as describe@hapter 5, “Writing Java
Connectors'{or in Chapter 6, “Writing C++ Connectorsand work on events,
transactions, and other issues.

How To USE THE CONNECTOR GENERATOR TOOL (WIZARD)

The Connector Generator Tool is located in the %VITRIA%\bin\win32 or
%VITRIA%\bIiN\TK sub-directory. For Windows NT, a batch file (connwiz.bat)
is provided to launch the program; for Solaris, you'll find a script (connwiz.csh)
that you can use to start the tool from a shell.

1. To start the wizard-version of the Connector Generator Tool from a Windows
NT command line, enter this command:

java com.vitria.connectors.generator.ConnectorWizard

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

In a few seconds, the Connector Generator Tool displays; by default, the
Required Info tab is in the forefront of the display and the fields will be blank.
The screenshot below shows settings as displayed after opening the .gen file
for the EBankSource connector (from the EBank Sample application). You
can open an existing .gen file by selecting File-->Open and then browsing the
local directory to find the file.

[Connector Generator Tool
File

Required Info | Paramelersl Mlscellaneuusl \merfacesl

Java tlass name [EBankJavaSource
Connector Type
Display nams |JavabisplayName) @ source ¢ target ¢ source-target
Java package HMM

. Onthe Required Info panel, enter a meaningful name for the Java class name;
this name will comprise the first part of the name of each generated file.

. TheDisplay namewill be used as the name of the flow in the RepBeaninfo
file and shown in the Console. THava packagename is the name of the
package to which all the generated files will belong. On this panel you should
also select the radio button for the type of connector you are creating.

. Click on the Parameters tab to display the Parameters tab. On this tab you can
enter the properties for the Flow’s property sheet. Each property for the
property sheet is specified with a Java type and a name.

:‘%Connectol Generator Tool [x]

File

Required Info Farametersl M\sce\lanenusl mterfacesl

Type | Name Display Name Help Text Def.

String |iorfile | TextMessage.for.. TextMessage.formatMessage(ebankiocal.. -

int account | Texthessage for ccount to monitor on the channel
Texihessage formathlessage(ebanklocale..

I T T T =l

As you can see, this example uses the EMT Framework; rather than having a
hard-coded Display Name and Help Text, methods created using the EMT
framework are listed. If you want the property to have a default value (the far-
right column of the display that’s not fully displayed) you can enter it on this
panel as well.

39

Whether hard-coded or referenced in this manner, the Display Name and Help
Text will display in the property sheet through the Console to the end-user. As
another example, here’s another screenshot showing some textual parameters
that are hard-coded and don't take advantage of the EMT Framework:

[2] Connector Generator Tool [<]
File
Reguired Info Parameters | Mls:el\aneousl Imerfacesl
Type | Name Display MName Help Text

int poliRate |Paoll Rate How often ta poll for events (in milliseconds) &
String |account |Customer Account |Account to monitor on the channel

Note that the “Type” column on the Parameters tab refers to Java types, so you
must be careful to enter only valid Java types. For example, the correct type
for Java string$tring —with a capital S—which is how you must enter the
type name.

. After entering all the parameters you want to be available to this Flow, click
on the Miscellaneous tab. Here you can enter the name of the icon, if any, that
you want your connector flow to use in the Flow palette on the Console.

[Connector Generator Tool
File
Required Inful Parameters Miscellaneous | \merfacesl
¥ Generate C++ Connectar Translators
FUseicon: [bsourcegit C++ library fAEBank
G+ method FreateEBanksour: |

If you will be implementing a C++ connector, select “Generate C++
Connector” and enter the names of the C++ library and createMethod that the
connector flow will use (the namgsurLibrary andyourMethod

display in the class and method fields when you select Generate C++
Connector; replace these names with the C++ library and method you’ll use to
create the Flow.) The code generated by this tool will include the appropriate
C++ wrapper calls.

m Toregister SimpleTranslator classes inside the .ini‘Gemerating an .ini
File By Using Connector Generator” on page 19a@u can enter the
Translator class (or classes) on this tab.

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

7. Click on the Interfaces tab. Enter the type of event interfaces that will be
accepted as input to the flow or sent as output from this flow; you can only
specify event interfaces (not individual events). This example from the
EBankJavaTarget connector shows the name of the Event interface
vtEBankConnectorModule.EBankConnectorEvents

2 Connector Generator Taol [x]

File

Renquired \nfal Farametersl Miscellaneous |mEffaCE$|

Source Event Interfaces Target Event Interfaces
WEBankConnectorMod. . | & o

(=l]

8. Once you've completed all the tabs of the Wizard with the relevant
information for the connector you're building, you can save the entries by
selecting Save from the File menu. You'll be prompted to enter a filename; use
.gen as the filename extension. (You can open this file later using the Wizard
and change any settings; open it in a text file and do the same; or generate
individual files at the command line.)

9. Finally, generate the files by selecting Generate from the File menu. You'll be
prompted for a sub-directory into which to place the generated files.

Even if you don’t have all the other components in place—events, message text,
icons for the Beanlnfo—you can still generate these Java elements and get a sense
of how the process works and what the code looks like.

Note that one difference between writing your own code manually and using this
tool is that the tool generates two class files rather than one for the Flow
implementation: a Base class and the flow that extends the Base. Essentially,
though, the code for the flow is the same.

41

Using the Connector Generator Tool and the .gen File

A .gen file is a text file formatted in a specific way that contains information used
to generate the requisite interface, class, and other files for a specific connector
flow. You can create a .gen file manually, using a text editor by following the
guidelines below, or as a by-product when you use the Connector Generator
Wizard tool, as described earlieriHow to Use the Connector Generator Tool
(Wizard).” Once you have a .gen file, you use it as an input argument for the
Connector Generator (command-line) tool, as shown here, to generate all files or
select files:

and Prompt

lcom.vitria.connectors.generator.ConnectorGenerator
Usage: java com.vitria.connectors.generator.ConnectorGenerator —file config—filj
{—output output—directory> (—options —drhis>

IC:\Progran Files\Uitria\BU3B\sanmples:connectors\Newbank\JavasJavaConnector>javal
com.vitria.connectors.generator.ConnectorGenerator —file ESource.gen —output c:
temp —options drhis

IC:\Progran Files:Uitria\BU3B\sanplesconnectors\Newbank\JavasJavaConnector>,
4

Specifically, a .gen file includes:

® The connector name and name to display in the Console
® The connector type (Source, Target, or SourceTarget)

® The Java package to which the connector will belong
°

The names of the .dll and the library function to execute in the constructor (if
the connector contains a C++ flow)

The property sheet names, types, and descriptions
® The filename of an icon to display in the Console, if any

® The list of translator classes that will be available in the processing tab in the
Console for a source-target flow (if you implement transformer methods in the
flow)

® The source and target interface list

Here are the first few lines of an example .gen file from the EBank sample:

classname EBankJavaSource

displayname
TextMessage.formatMessage(ebanklocale.EBankSourceConnecto
rMessages.JavaDisplayName)

kind source
package jebank
icon ebsource.gif

BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

sourceinterface nameofsource.eventinterface
sourceinterface vtEBankConnectorModule.EBankConnectorEvents

As you can see, this is a simple text file format that begins with an identifier name
as the firstitem on a line followed by a value. The entries in the text above provide
the classname for the flow (class EBankJavaSource); the name that will display in
the console (picked up from the EMT Framework); the name for the Java package
(package jebank); identifies that this will be a source connector flow (kind
source); and identifies the icon that will be used (icon ebsource.gif). Also in the
file is a reference to the type of events that the flow will handle (using the
sourceinterface identifier).

A .genfile also contains listings for all the parameters defined in the EBankSource
class; parameter descriptions in the .gen file are in the format:

param type name "short description" "long description”

with the label “param” at the beginning of the line. For example, this flow will
have a String parameter named “iorFile” that will get its short description label
from the locale bundle’s IORShort variable and its long description from the
IORLong variable.

param String iorFile
TextMessage.formatMessage(ebanklocale.CommonEBankConnecto
rMessages.|ORShort)
TextMessage.formatMessage(ebanklocale.CommonEBankConnecto
rMessages.|ORLong)

The reference to the locale bundle from which all the text derives is at the end of
the .gen file, as follows:

bundle vtEBankLocale3

Here’s another example .gen file, however, one that doesn’t implement the EMT
Framework; the comments (#) describe what's going on in this listing:

parameter descriptions format:

name of the connector class
classname javaSampleS

name to be displayed in the gui
displayname "sampleS"

kind of connector (source, target, or sourcetarget)
kind source

java package this connector belongs to
package sampleS

icon for display in the gui

icon ebsource.gif

43

44

parameter descriptions format:

param type name "short description” "long description”
param String firstName "First Name" “"customer name"
translator name.of.translator.class

translator SimpleTranslatorinterface

sourceinterface nameofsource.eventinterface
sourceinterface SimpleTranslatorinterface

BusinessWare Connector Programming Guide

WRITING JAVA CONNECTORS

The flow’s def, rep, and Beanlnfo work together to provide access to the flow as

a visual component (via the Console) so that end-users, such as business analysts,
can set parameters and configure the specifics of the implementation at runtime.
It's the flow itself that does all the work of a connector, however, and that’s the
subject of this chapter.

The code you write must make calls to the external AP1 and process events, which
means that you should have an understanding of the external API before starting
and that you've given some thought to how you will specify the events in IDL or
ODL; see"Defining Event Interfacesfor details.

If the flow you're writing will participate in transactions, you must also write the
code for the transaction resource; $é&iting a Transaction Resource” on
page 75or details. Topics in this chapter include:

® Introduction to Java Connector Flows

® Writing Code for a Java Connector

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sample

INTRODUCTION TO JAVA CONNECTOR FLOWS

All Java connector flows (source, target, and source-target) inherit some basic
behavior (characteristics) from the BaseConnector class. Generally speaking, the
common activities from a high level include starting the connector; interacting
with the external system; and stopping the connector.

From a lower level, common functions include initializing the connector,
retrieving configuration information from the repository, obtaining environmental
information (from the Flow Env), and obtaining (and subsequently releasing) a
connection to the external system. Source and target connectors diverge in how
they process events (receive or send) and whether they can initiate a commit
(source connector flows should initiate).

45

This chapter guides you through the process of writing the Java code for a
connector to accomplish all these tasks, highlighting some of the differences
between source and target connector flows that affect programming choices.

WRITING CODE FOR A JAVA CONNECTOR

If the external or third-party API for which you're creating the flow has been
implemented in Java, you will implement the Flow in Java.

Your code should start with the package name; use the same name as the package
for the Def, Rep, and BeanInfo. Here’s the top portion of the code from the EBank
Java source flow:

package jebank;

import com.vitria.fc.flow.*;

import com.vitria.fc.meta.*;

import com.vitria.fc.object.*;

import com.vitria.jct.JctLib;

import com.vitria.fc.io.*;

import com.vitria.fc.diag.*;

import com.vitria.connectors.common.BaseConnector;

import java.net.*;
import java.io.*;

import EBankAPI.*;

import vtEBankConnectorModule.*;

import ebanklocale.*;

import com.vitria.msg.ConnectorMessages;

In the sample above, the imports for EBankAPI.*, viEBankConnectorModule.*,
and ebanklocale.* are specific to the EBank connector, but all other imports at the
top of the file are standard for any connector. Additionally, for a transactional
flow, you would also import the ConnUstil class:

import com.vitria.connectors.common.ConnUtil;

After the imports, the code for any type of flow starts by extending the
BaseConnector class from com.vitria.connectors.common.BaseConnector:

|'6'ub|ic class EBankJavaSource extends BaseConnector
implements Runnable {
private EBankConnection connection_;

46 BusinessWare Connector Programming Guide

Writing Java Connectors

As you can see, the code in the example above also implements Java’'s
Runnable interface as a simple way of implementing its thread logic. Here's
another example, from the target (rather than a source) connector; this one doesn’t
implement Java threads, as a point of comparison:

public class EBankJavaTarget extends BaseConnector
implements EBankConnectorEvents {

In this example, the EBankJavaTarget flow class implements the event interface
from the third-party system; you'll see more about this later in this chapter.

A final note about the code sample page 46 The private EBankConnection
object (variable) will be used to connect to the EBank server at runtime.
Depending upon the external system, you may or may not need to setup a
connection within which to interact with the external system. For example,
database and message-queuing systems typically require a connection within
which to handle transactions; on the other hand, file systems don't.

For this specific example, the connection object is used later in the cot&airt
and Stop Processing in the Flow” on page 48

INITIALIZE THE CONNECTOR FLOW

Next, you must provide code to initialize the Flow; this will be called when the
flow is created. As shown in the example, the init() method gets passed the Def,
which contains the configurable parameters, and a Flow Env; the Flow Env is not
used directly elsewhere in the code you write, but you must pass it in the
initialization method so that the flow can obtain the environmental information it
needs (pointer to the transaction resource, for example). The standard fully-
qualified signature for the init() method is as follows:

init(com.vitria.connectors.common.ConnectorBaseDef, com.vitria.fc.flow.FlowEnv)

Here’s the relevant code froEBank Connector Sample

bﬁblic void init(EBankJavaSourceDef d, FlowEnv env){
/I STANDARD call super.init
super.init(d, env);

iorFile_ = d.getlorFile();
account_ = d.getAccount();
pollRate_ = d.getPollRate();

47

As shown in the listing above, within the init() method you must first call
super.init(def, env) and next obtain the configuration parameters from the Def. (At
runtime, this block serves to bring in either the default parameters or the
parameters saved to the repository by an end-user.) With the basic flow initialized,
the next task the code must handle is starting and stopping the flow from
processing events.

START AND STOP PROCESSING IN THE FLOW

Once the flow is initialized, you must next provide methods that start and stop
event processing in the flow; these methods will be invoked whenever an end-user
starts, pauses, or stops a connection model from the BusinessWare Console, for
example.

The first task is to override the void startEvents() method (inherited from the
BaseConnector class); this gets called when the model is started:

bﬁbliq void startEventslg){
if (logLevel_ >= DiagLogger.ERROR){)
)onnectorMessages.log tarting(logger, EBankSourceConnectorMessages.baseid,
name_);
}

try {
connection_ = new EBankConnection(new File(iorFile_));

The code above will attempt to connect to the EBank server. If the connection to
the banking server is unsuccessfuDiagError is thrown; the Flow Manager
catches th®iagError and shuts down the connection model (not all the error-
handling code is shown; see tBBank Connector Sampfer complete code
listings.)

Frequent re-connections (and disconnections) to an external system are
inefficient, which is why the standard approach to connecting to the external
system in any flow should be within tis¢artEvents method (as shown in the
code above) and disconnection should be witopEvents (stopEvents is
covered orpage 49.

After connecting to the external system, you must next call super.startEvents():

super.startEvents();
running_ = true;
thread_ = new Thread(this);
thread_.start();

48 BusinessWare Connector Programming Guide

Writing Java Connectors

if (logLevel >= DiagLogger.ERROR){
ConnectorMessages.logStarted(logger_,EBankSourceConnectorMessages.baseid,

name_);

}
The next block of code overridemid stopEvents() ; this method will get
called when the model is stopped. After checking for errors, the first thing you
must do inside stopEvents method is to calper.stopEvents —you must

do this before actually disconnecting. Here’s the sample code:

publlc void stopEvents(){
if (logLevel >= DiaglLogger.ERROR){

Conn_)ectorM'essages .logStopping(logger_, EBankSourceConnectorMessages.baseid,
name

/I STANDARD call stopEvents before doing stop work
super.stopEvents();

if (thread_ != nuII){
running_ = fa
thread_ mterrupt() /I in case we are sleeping

if (CgLeveI >= DiaglLogger.ERROR){

)onnectorMessages .logStopped(logger, EBankSourceConnectorMessages.baseid,
name

}

You must also stop the polling thread (for source connector flows that are polling
a data source, as in this example). If the flow uses a connection, the code in
stopEvents would include the necessary calls to disconnect from the third-party
application (although in this specific example, there is no disconnect call; that's
handled automatically when the process terminates.)

After taking care of initialization and providing mechanisms to start and stop the
connector, the next major task is providing the code that actually does the work of
processing the events that ultimately should move through the flow, as discussed
in the next section.

49

CODE THAT SENDS AND RECEIVES EVENTS

You must implement code in your flow to send or receive events (or both) and
move them to subsequent flows in the model. Source flows send events; target
flows receive events; source-target flows can do both. For target (and source-
target) flows, events are typically processed in the flow’s own doPush() method,
while source (and source-target flows) do this work typically in a thread and call
super.doPush to pass events to subsequent flows.

The specific implementations vary depending on how the event information is
available, specifically, whether event information is accessed from the metadata
system or from marshaling stubs generated from IDL files, as discussed below.

SeeChapter 7, “Defining Event InterfacesghdBusinessWare Programming
Guidefor additional information about events.

Event Handling (Target or Source-Target Flow Only)

Target and source-target flows receive events and typically process them in their
own doPush() method. The method signature for a target flow’s doPush() is:

public void doPush(EventBody evt)...

An EventBody is the structure (both Java and C++) that represents events in
BusinessWare; aBventBody contains information, such as definition of its

event interface, event name, and other specifications and parameters, needed to
construct or deconstruct an event. You can construct or deconstruct the events at
runtime in several way, including the approach shown in the sample code for
EBank Connector Sampldiscussed briefly in this section.

The standard approach for handling events in target connector flows (and source-
targets) is to override doPush(). Within this method you'll put your event
processing code specific to your application needs, such as adding records to a
target system or updating database tables.

public void doPush(EventBody evt)

If (!evt.tE/
}

Dispatch(this) && lo Levei_ >= DiagLogger. WARNING){
kTargetConnectorMessages.logUnknownEvent(logger_, evt.getEventSpec());

50

A target flow decomposes the EventBody that is passed to it in the doPush(). The
EBankTarget connector flow is interested in (has subscribed to) two different
types of event only-withdraw , deposit — it will drop any events of type
balance (but will write a message to the log file).

BusinessWare Connector Programming Guide

Writing Java Connectors

In this example, the EBankTarget connector flow must take deposit events and
withdrawal events and push them through a connection to the EBank server,
which means they must take the incoming event and construct it as the type of data
that EBank server can accept.

public void balance(int_account, double balance){
if (logLevel >= DiagLogger.WARNING){
BankTargetConnectorMessages.logBalanceNotSupported(logger_);
pug)lic void withdraw(int account, double amount){

' connection_.withdraw(account, amount);

public void deposit(int account, double amount){

Ebnnection_.deposit(account, amount);

The code sample above ussdispatch() method; tryDispatch looks at the
event, and if this flow implements the appropriate event interface, it will call the
method that corresponds to the event interface. EventBody gets the information it
needs about the event from its metadata, when it does the tryDispatch routine.

Vitria recommends using this approach when stubs are available. To use this
technique, your code must also implement the interface in which the events are
defined. In this example, tHteBankConnector.idl was used (with the
jstubgen tool; seeBusinessWare Programming Referefmedetails) to

generate several Java class and helper files (for marshalling and unmarshalling
objects of the type specified in the IDL), which ultimately produced an interface
that's implemented in this EBankJavaTarget, as shown here:

public class EBankJavaTarget extends BaseConnector implements EBankConnectorEvents

Here’s the complete text &BankConnector.idl , which defines the events:

#ifndef _ebank_events_idl
#define _ebank_events_idl 1

/I STANDARD Connector modules begin with vt
module vtEBankConnectorModule {
) /I STANDARD interface names capitilize each word
interface EBankConnectorEvents {]
/I STANDARD event names lower case first word, upper case others
event void balance(in long account, in double balance);
event void withdraw(in long account, in double amount);
event void deposit(in long account, in double amount);

51

#endif

SeeChapter 7, “Defining Event Interfacest theBusinessWare Programming
Guidefor additional information about IDL, ODL, and BusinessWare events.

Event Handling (Source or Source-Target Flow)

For a source flow, events are typically handled by constructing them from
metadata and data (when new data is found in the external system during regular
polling), and pushing them to the next flows by calling the
super.doPush(com.vitria.fc.flow.EventBody) method. The event gets sent to the
source connector’s target list.

You must also wrap the doPush() calls inside a mutex (semaphore or lock that
ensures mutually exclusive use); this transactional mutex ensures that none of the
following occur at the same time:

® push
commit
abort

start

stop

This example steps through the source connector flow fE®ank Connector
Sampleo highlight one approach to creating events. In the example, the source
connector flow monitors EBank server for a change to the balance of a specified
account and pushes the event when there’s a change.

The listing only details the specific event-related code; the key tasks are creating
theEventBody andthen callingloPush() to send the eventto the connector’'s
target list. Unlike the EBankTarget connector flow, the source connector flow
does not implement the event interfaces as compiled stubs. This uses an object
calledEventDef to hold the definition of the balance event, which it obtains
with the getMetaObject() method below.

i'r'hport com.vitria.jct.JctLib;

import com.vitria.connectors.common.BaseConnector;
N private EventDef balanceDef ; // eventdef used to create our balance event

[lInitialization code)
/* As a minor optimization, we can cache the event def used to publish
our balance events.

52 BusinessWare Connector Programming Guide

Writing Java Connectors

*

balanceDef = (EventDef)]]
EBankConnectorEventsHelper.getMetaObject().findDef("balance");

/I startEvents(), stopEvents(), disconnect, other general routines not shown

This is the main polling loop (executed by the the thread). EBank Server is polled
continuously for the balance; when the balance changes (it knows when it
compares theewBalance tolastBalance), it calls sendNewBalance,
passing the balance as a parameter.

public void run(){
while (running
double newBalance = lastBalance_;
/I error and logging code

/I get the balance)
newBalance = connection_.balance(account);
I error-LandIing code
/I looks for a new balance and sends the event; does nothing if no balance change
if (newBalance != lastBalance)
sendNewBalance(newBalance);

else
/I error and 1ogging code, checking the pollrate, threads, not shown here

Here’s the code for the sendNewBalance() method that gets called; the key task is
to create a new event for the balance EventBody and push it along. Within the
sendNewBalance method, the event is constructed from the array of the
parameters that comprise it. The EventDef provides information (metadata) about
how these parameters should be usedcfieateEventBody) to construct the
EventBody from the parameters.

/* Create a new event for the new balance, and send to the next flow */
private void sendNewBalance(double newBalance){
if (logLevel >= DiaglLogger.VERBOSE){
BankSourceConnectorMessages.logNewBalance(logger_, newBalance);

/Inew” balance gets processed in here; create event parameters for the event here
/lput account (int) first, followed by the balance (dbl)
Object [] parameters = new Object[2];

parameters[0] = new Integer(account_);

parameters[1] = new Double(newBalance);

/I create the event body and push it alon

EventBody out = JctLib.create ventBodgléba anceDef_, parameters);
if (logLevel_ >= DiagLogger.VERBOSE){
EBankSourceConnectorMessages.logPushing(logger_);

53

/I STANDARD make all stateful changes before calling doPush or commit
lastBalance_ = newBalance;

Once the EventBody contains the appropriate data, the super.doPush() can send it
onits way. As mentioned earlier in this section, a true source connector flow must
do this within the context of the mutex. Only true sources—not source-targets or
targets—should acquire this mutex. Here’s the code showing the mutex in the
EBank Connector Sample

Object transmutex = service_.waitForCommit();

P/nchronlzed (transmutex){

/I STANDARD call super.doPush to push events to the next flow
super.doPush(out);

/I commitAfter_ for source connector flows goes here

Source connector flows have one final task to perform—checking the value of the
commitAfter_status flag, as discussed in the next section.

CHECKING VALUE OF COMMITAFTER _

Source connector flows must always check the value of the commitAfter _boolean
at the conclusion of the code, as shown in the listing. The commit must take place
outside the transmutex lock (shown above):

if (commltAfter
if (logLevel >= DlagLog%/?rVERBOSE&
BankSourceConnectorMessages.logCommitting(logger_);

?erwce_.commit();

As mentioned elsewhere in this guide, source connector flows must perform this
check because of the processing lifecycle within a connection model: after an
event has been pushed through the entire connection model, the doPush (from the
source connector flow that initated the process) is returned to the source flow. If
the commitAfter_ boolean has been set to “true,” (by a business analyst or other
end-user), then the source connector flows aalmmit() on the transaction
service.

See"Java APl Summary” on pagefbr a recap of methods used.

54 BusinessWare Connector Programming Guide

WRITING C++ CONNECTORS

Developers can write all the elements of the connector code in Java, not only the
visual components that enable access through the Console—the Def, the Rep, and
BeanInfo—but the Flow code itself. However, if the external system provides

only C/C++ APIs, you'll need to write the flow in C++. You still create the def,

rep, and Beanlnfo classes in Java, but you will tie the flow to these entities using
a wrapper class provided by Vitria, that allows C++ flows and Java flows to
interact within the same connection model. This chapter tells you how; it provides
information about implementing a connector flow in C++; topics include:

® |Introduction to C++ Connector Flows and Flowbridge

® Implementing a Flow in C++

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sampikat ships with BusinessWare.

INTRODUCTION TO C++ CONNECTOR FLOWS AND FLOWBRIDGE

Flowbridge is a complete Java package (com.vitria.connectors.flowbridge) and
C++ library (vtFlowBridge) that provide several utility classes for working with
C++ connector flows in the context of BusinessWare. Because much of the
runtime implementation of BusinessWare, including the Console, is Java specific,
when working with C++ flows, you’ll need a way to let the flow objects you
expose and control in the Console communicate with the flow itself. You'll also
need a way to log messages and the like. FlowBridge provides mechanisms for
communicating across the Java-C++ boundary.

One of the FlowBridge facilities is the C++ wrapper, a Java class that essentially
functions as the representative for the C++ flow (in the context of a runing
connection model). The wrapper (CPPFlow) extends the BaseConnector class, so
it picks up standard flow properties, such as a list of flows to which it should
deliver events.

Internally, the C++ wrapper implements a C++ wrapper flow def with the help of
a C++ wrapper flow rep. The wrapper lets C++ flows work with the Java-based
components of BusinessWare, as discussed in the next section.

55

How THE C++ WRAPPER WORKS

In a typical Java connection model, calls to doPush(), move synchronously
through the connection model from flow to flow. Behind the scenes, a lower-level
mechanism (not exposed to developers), does the work of pushing events from
flow to flow; the push returns in the reverse order, back to the source flow.

When a C++ flow is included in a connection model, the same general process
occurs, but a Java wrapper class (com.vitria.connectors.flowbridge.CPPFlow)
intercepts the push on behalf of the C++ flow, and negotiates all processing on its
behalf.

The CPPFlow acts as a Java representative for the C++ flow in the model. The
CPPFlow intercepts any pushes to a C++ flow in the model; it processes the event,
sending it the next flow in the model if appropriate.

Behind the scenes, when CPPFlow receives an event (in doPush()), it serializes
the event into raw data which it then sends across the Java/C++ barrier using JNI
(Java Native Interface) to the actual C++ flow.

When the data is received in C++, the event is deserialized (inflated) back into its
regular state as an event, to be processed by the flow; push() gets called on the
C++ flow with the event. If this push() call causes the C++ flow to push events of
its own (if it is a source-target), these events are passed from C++ back to the Java
wrapper using CORBA, where the events are temporarily stored in an event
buffer.

After the NI call has returned, the CPPFlow wrapper checks to see if any events
are in the event buffer; if so, it pushes these events to the next flow or flows in the
model.

Calls to the logger from within the C++ flow must also make use of this
mechanism. These are all routed through a dispatcher that makes CORBA calls to
cross the C++/Java barrier. The actual calls are made inside the Java framework
by the Java wrapper code.

IMPLEMENTING A FLOW IN C++

56

Creating a C++ flow and using the wrapper class involves the following steps:

® Create the Java components. In the Rep (EBankCPPSourceRep.java or
EBankCPPTargetRep.java, for example), make a call to the C++ wrapper to
create the flow, as discussed‘iDall the Wrapper in the Java Code for the
Rep.”

BusinessWare Connector Programming Guide

Writing C++ Connectors

® Write the C++ creation method using a standard CreateFlow method
signature.

e \Write the C++ code for the flow. As with a Java flow, the C++ flow must
implement initialization, startup, shutdown, and other standard routines, as
well as do the work of the flow itself; that is, either send or receive specified
events.

These steps are discussed in the next several sub-sections.

CREATE THE JAVA COMPONENTS

Writing the Java components for a C++ flow is the same as writing a Java flow,
with the exception of how the flow gets created by the Rep (as discus$€dlin

the Wrapper in the Java Code for the R¢B-0r example, here’s the Java Def for
the source connector:

package cppebank;
import com.vitria.connectors.common.*;

public interface EBankCPPSourceDef extends
ConnectorSourceDef :
public String getlorFile();
public void setlorFlle&Strlng iorFile);
public int_ getAccount();
public void” setAccount(int account);
public int getPollRate(); .
public void setPollRate(int pollRate);

SeéCreating Java Components for a Connector Flow” in Chapter 4 on page 25
for additional information. One administrative detail, however: be sure to name
all file names related to a C++ consistently, using the naming conventions for the
Java file names. For example, the filenames associated with the C++ version of
EBank source connector flow are:

m EBankCPPSourceDef.java

m EBankCPPSourceRep.java

m EBankCPPSourceBeanlInfo.java
m EBankCPPSource.hxx

m EBankCPPSource.cxx

57

CALL THE WRAPPER IN THE JAVA CODE FOR THE REP

The Java Rep for the C++ flow must make the call to create the flow through the
C++ wrapper. Here’s an excerpt from the EBankCPPSourceRep.java (from the
EBank Connector Sampléhat shows how to bracket calls to create the flow
source with the CPPFlow:

publlc FlowSource createFIowSourceé’FlowEnv env){
CPPFlow cppFlow = new C PFIowg‘thls env);
cppFlow.setSharedLibName("vtEBank™);
cppFlow. setMethodName(‘CreateEBankSource");
String [] params = new String[3];

params[0] = "™ + iorFile_;
params[l] = "™ + account_;
params[2] = "™ + pollRate_ ;

cppFlow.setParams(params);
cppFlow. |n|tﬁenv)
return cppFlow;

The parameters are put into a string array, which then gets passed to the create
method.

WRITE A C++ FUNCTION THAT GETS CALLED BY THE WRAPPER

Write a create function using the standard signature (shown below); this create
method is used to wrap the C++ flow inside the Java wrapper. Here’s the standard
signature:

#ifdef

#else
int CreateFlowNameHere(const char** params,int iNumParams)

_declspec(dllexport) CreateFlowNameHere(const char** params,int iNumParams)

58

The example C++ file listed below contains the methods used to instantiate both
the source and target connectors for the EBank sample. The

CreateEBankSource function shows standard method signature to use for
methods that create C++ flows.

Note that the parameters are being passed as string values and converted to the
appropriate types later in the code. You'll have to do this for the create function
for your flow as well, because the parameters are always passed in as string
values.

BusinessWare Connector Programming Guide

Writing C++ Connectors

At runtime, both the EBankCPPSourceRep and EBankCPPTargetRep will create
CPPFlow objects that will call the create methods using JNI (Java native
interface).

[* This CreateFlow.cxx file contains the methods used to instantiate the source
and target flows. The Java Reps (generated by the connector wizard) create
CPPFlow objects that call these create methods using JNI *

#include "IOP/vtiioporb.hxx"
#include "bw/flow.hxx"

#include "EBankSource.hxx"
#include "EBankTarget.hxx"

#ifdef __cplusplus
extern "C" {
#endif

[* This is the standard method signature to use for methods that create C++ flows.
Parameters are always passed to us as string values, so you will have to convert
as necessary. */

#ifdef _WIN32 o
int __ declspec(dllexport) CreateEBankSource(const char** params,int iNumParams)

int CreateEBankSource(const char** params,int iNumParams)

#er{1 i
const char * ior;
int account;
int pollRate;
[/l convert the string parameters to their appropriate types
ior = params[Ol;
sscanprarams[] "%d", &account);
sscanf(params[2], "%d", &pollRate);
/I instantiate the source flow]
EBankSource * flow = new EBankSource(ior, account, pollRate);
return (int)(vtFlow::Flow*)flow;
}
#ifdef _WIN32

“ Iint — declspec(dlilexport) CreateEBankTarget(const char** params,int iNumParams)
else
int_CreateEBankTarget(const char** params,int iNumParams)
#endif
EBankTarget * flow = new EBankTarget(params[0]);

return (int)(vtFlow::Flow*)flow;

#ifdef __ cplusplus
#endif

59

WRITE THE CODE FOR THE C++ FLOW

The connector flow must provide routines to enable initialization, starting and
stopping the flow, and event processing. A C++ flow is typically implemented as
source file and a header file that contains several function signature £ Baoik
Connector Samplsource connector flow, these are EBankSource.cxx and
EBankSource.hxx, respectively.)

Within the C++ code for your flow, you must extend tt&low::Flowimpl
class. Here's a sample code listing from EBankSource.hxx:

#ifndef EBankSource_h
#define EBankSource_h 1

#include "EBankConnection.hxx"

/I STANDARD: Extend vtFlow::Flowlmpl
class EBankSource : public vtFlow::Flowlmpl {
private:] o)
char iorFileName [1024]; // the name of the file containing the ior
int account_; // the account we are pollin
int pollRate_; // the poll rate in milliseconds
EBankConnection * connection_;
int running_; // used for start/stop of our thread)
gl(puble lastBalance_; // what is the last balance we have received?
public:
/* Constructor. Takes the ior filename, account, and poll rate. */
EBankSource(const char *, int, int);

Next, you must override void startEvents(_Ix_Env& _env):

/* In our start code, we connect to the EBank Server, and start
9/ur polling thread. If there is a problem, we set an exception.

void EBankSource::startEvents(_Ix_Env& _env) {
VTDiagnostic* diag;

diag = ConnectorMessages::createStarting(EBankSourceConnectorMessages::baseid,
"EBankSource");]]
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

Make any necessary calls to connect to the third-party application. Include code
to prevent startup if there’s an error (note tle@v.exception(err)inthe code
below).

/I try connecting
if” (lconnection_->connect()){
d/' could not connect!
iag = .
Cgmm_g;]EBankConnectorMessages::createErrorConnectlng(EBankSourceConnectorMessages
::baseid);
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

60 BusinessWare Connector Programming Guide

Writing C++ Connectors

/I _set exception so we don't start u

: C p

VTDiagError * err = VTDiagError::create(_ FILE_ , _ LINE_
Cgmm_g;]) BankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid));

_env.éxception(err);

return;

After connecting (or creating a connection to) the external system, you must call
FlowImpl::startEvents(_env); if you need to start a thread for polling (as in a
source flow), you can do it in this function:

/I STANDARD 1threads that push events must be started after Flowlmpl::startEvents
running_ = 1;

/* This call creates a thread that will call the pollAccount method
with this flow as an argument. */)
VTThreCreate(0, EBankSource::pollAccount, this);

diag = ConnectorMessages::createStarted(EBankSourceConnectorMessages::baseid,
"EBankSource");

flowbridge_logmessage(VTTRACE_ERROR, this, diag);

Your flow should also provide the implementation for stopEvents(_Ix_Env&
_env), as shown in this listing. Within this function, you should also stop any
threads, disconnect from the external system, and handle any errors:

void EBankSource::stopEvents(_Ix_Env& _env){
VTDiagnostic* diag;

diag = ConnectorMessages::createStopping(EBankSourceConnectorMessages::baseid,
"EBankSource");

flowbridge_logrﬁessage(VTTRACE_ERROR, this, diag);

Before disconnecting, you must call FlowImpl::stopEvents(_env) before stopping
processing:

/I STANDARD call Flowlmpl::stopEvents before stop work is done
Flowlmpl::stopEvents(_env);

running_ = 0;
diag = ConnectorMessages::createStopped(EBankSourceConnectorMessages::baseid,

"EBankSource");
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

61

Calls to disconnect from the third-party application would be in this section of the
code as well (in the example code shown above, disconnection is automatic, so
there’s no code for it).

Code that Sends and Receives Events

For atarget (or source-target) flow, you should override push(vtFlow::EventBody
* event, _Ix_Env& env). This gets called when your flow receives an event; the
EventBody is passed into the flow through this entry point. As shown in the
listing, event processing code also goes within this function.

To handle the events, your C++ flow should use the tryDispatch method (if stubs
are present) which looks at the event and calls the appropriate method (if the event
interfaces have been implemented); in this example, event interfaces are for
balance, withdraw, or deposit.

If a balance event is being pushed, it's not processed, but an error message gets
logged. The error handling is passed through calls to FlowBridgesee API
Summary” on page for function listing.

void EBankTarget::push(vtFlow::EventBody * event, _Ix_Env& env){
if (!event-,>tryD|spatchét,h|s)){
VTDiagnostic * diag =
EBankTargetConnector essa();res::createUnknownEvent(EBankTargetConnectorMessages::b

aseid, e\(ent->getEventSpec§')))
flowbridge_logmessage(VITRACE_ERROR, this, diag);

}/ This gets called b?/ tryDispatch

void EBankTarget::balance(CORBA::Long account, CORBA::Double amount, _Ix_Env&
env
VTDiagnostic * diag =
EBankb arg%t)ConnectorMessages::createBaIanceNotSupported(EBankTargetConnectorMess
ages::baseid);))
flowbridge_logmessage(VTTRACE_WARNING, this, diag);

}

/I This _gets called by tryDispatch

void EBankTarget::deposit(CORBA::Long account, CORBA::Double amount, _Ix_Env&
env
VTDiagnostic * diag = N
EBankTargetConnectorMessages::createDepositing(EBankTargetConnectorMessages::bas
eid, account, amount); i)
flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

connection_->deposit(account, amount);

}/ This gets called by tryDispatch

void EBankTarget::withdraw(CORBA::Long account, CORBA::Double amount, _Ix_Env&
env
VTDiagnostic * diag =))
EBankTargetConnectorMessages::createWithdrawing(EBankTargetConnectorMessages::ba
seid, account, amount);))
flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

connection_->withdraw(account, amount);

62 BusinessWare Connector Programming Guide

Writing C++ Connectors

(The parsing of event data and metadata to construct or deconstruct an EventBody
is conceptually the same process as discuss@ade that Sends and Receives
Events” in Chapter 5 on page 50

If your flow is a Source or SourceTarget flow, you must make calls to
FlowImpl::push(vtFlow::EventBody *, Ix_Env& env) to push events on to the
next flow (or flows). Here's a sample code listing:

/" get the balance)
ouble newBalance = connection_->balance(account_);

/I If we have a new balance, publish an event!
if gnewBaIance 1= lastBalance_){
astBalance_ = newBalance;

diag =
E_BankgSourceConnectorMessages::createNewBaIance(EBankSourceConnectorMessages::bas
eid, newBalance);))

flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

/I construct the event body

vtCORBA::Double corbaDouble = (viCORBA::Double) newBalance;
VtCORBA::.Long corbaLong = (VtCORBA::Long) account_;
OcsStublmpl::ParamValue params[3]; // leave 0 open
params[l].addr = &corbalong;

params|2].addr = &corbaDouble;

OcslinterfaceHelperElem * op =
vtEBankConnectorModuIe_EBankConnectorEvents_getHeIper()->e|ems()[(g;

vtFIcaw::EventBody * event = vtChanFlow::ChanFlowLib::createEventBody(op,
params);

{j/_ push it
iag =
EBankgSourceConnectorMessages::createPushing(EBankSourceConnectorMessages::baseid

) flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

IX_Env env;
FlowImpl::push(event, env);

}
elsg' {

iag =
EBag)kSourceConnectorMessages::createNoNewBaIance(EBankSourceConnectorMessages::b
aseid);

flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

Se€'C++ API Summary” on page for more information about FlowBridge. See
BusinessWare Programming GuidedBusinessWare Programming Reference
for additional information.

63

64

BusinessWare Connector Programming Guide

DEFINING EVENT INTERFACES

This chapter provides an introduction to BusinessWare events and how they are
defined (using IDL) and stored in the repository as metadata. Topics in this
chapter include:

® Overview of Events and Metadata
® Registering and Using Metadata

® Programming Techniques for Working with Events

OVERVIEW OF EVENTS AND METADATA

The common purpose of any BusinessWare connector flow is typically to either
send or receive an “event”—a structure that contains both data and metadata that
is used in the context of an application. For exampleBBank Connector
Sampléhandles three different types of events: a withdraw event, a deposit event,
and a balance event.

Metadatais data about data; it provides information about data itself, such as type
of data, name, length, and so forth. In the context of BusinessWare and connector
flows, metadata is data that provides information about an event, including its
name, data type, and parameters.

BusinessWare uses the same hierarchy of metadata as is used by CORBA
(Common Object Request Broker Architecture); the BusinessWare repository
provides a hierarchical namespace for handling metadata. BusinessWare
maintains a dictionary of all event metadata in the namespace; the system uses this
dictionary at runtime to determine system behavior as events flow through the
system. (The registry holds metadata about all other BusinessWare objects as
well, in addition to events. SdgusinessWare Metadata Guittr additional
information.)

65

Developers must define the events that will be sent from or received by a custom
connector. The structure of any event is exposed to other objects through an
interface. Depending on the specific characteristics of the external system,
developers can use IDL (interface definition language) to define event interfaces;
ODL (object definition language) to define data or object interfaces; or both, as
discussed in the next section.

OVERVIEW OF IDL AND ODL

In BusinessWare, IDL is used to define event interfaces, while ODL is typically
used to define data interfaces.

Both IDL and ODL are vendor-neutral definition languages. IDL is a CORBA-
compliant description language promulgated by the Object Management Group;
ODL is a specification language (from the Object Data Management Group,
formerly the Object Database Management Group). ODL is used to define object-
oriented data, specifically, object types that conform to the ODMG Object Model.

Both IDL and ODL aredescriptivdlanguages; an IDL (or ODL) file defines an
interface and fully specifies the parameters of each operation provided through the
interface.

Vitria has extended these description languages by adding the keyword “event” to
model the type of data specific to BusinessWare. (As an aside, you can use
BusinessWare strictly as a CORBA ORB—bypassing the publish-subscribe and
channel architecture—by not defining events.)

CREATING DEFINITION FILES THAT DESCRIBE METADATA

As mentioned previously, developers typically will use IDL to define event
interfaces. To specify data interfaces that represent an object in an external system
(or define a data interface for a persistent data store, such as an object-based
database or collections), you can use ODL. In most cases, however, connector
developers will be creating IDL files.

An IDL file is a text file formatted in a particular way that uses specific keywords
to define a containment structure of objects that comprise metadata. An IDL file
includes a definition of a module name that contains one or more interface
definitions; each interface also contains one or more event definitions, as shown
in this sample:

module vtFileConnectorEvents {

66

typedef sequence <string> stringArray;
typedef sequence <octet> octetArray;

BusinessWare Connector Programming Guide

Defining Event Interfaces

interface dataFileEventinterface {))]
event void dataFileEvent(in octetArray data, in string fileName);

interface asciiFileEventinterface))) i
event void asciiFileEvent(in stringArray data, in string fileName);

interface fileNotificationEventinterface {
event void fileChanged(in string fileName);

event void fileDeleted(in string fileName);
event void fileCreated(in string fileName);

For an external system that has many objects or events, you can nest modules
within each other, as shown in the listing page 68each module defines a
separate object.

These identifiers—module, interface, event—combine to provide a fully-
qualified reference to an event in the hierarchical namespace (the repository).

If objects in the external system are modeled for create, read, update and deletes,
you can use ODL to define data interfaces (rather than IDL). Like IDL, an ODL
file can contain modules, interfaces, and events. Unlike IDL, ODL includes a
keywordpersistent that you can use as part of an interface definition. For
example, the the data interface fokBLE1in the example below uses this

keyword:

interface TABLEL1 : persistent {

In addition, ODL automatically generates certain events (in IDL, events must
always be specifically defined) when you ‘grind’ persistent interfaces (generate
stubs from ODL by running the ODL file through the BusinessWare pre-
compiler), specifically:

add

change

delete
addOrChange
changeWithValue
deleteWithValue

Here’s an excerpt of an ODL file:

module externalSystemConnectorEvents

67

struct nameValueStruct {
string name;
any value;

2
typedef sequence <nameValueStruct> nvSeq;
interface externalSystemGenericEvents
event void ObjectChange(in. strlng keelfleld in Ion% objID, in nvSeq attrs);
jID

event void ObjectAdd(in string in lon |n nvSeq attrs);
event void ObjectDelete(in strlng eyfleld in Iong Obj

module TABLE1 Module {
/* TABLE1 structs go here */

interface. TABLEL : Per&stent {
attribute string fieldl;
attribute double field2;
attribute double field3:
attribute string field4;

68

In this example, all the fields iINABLE1 are primitive types (in this case, strings
or doubles), but an external system may comprise many other types as well (in
addition to primitives).

To represent defined types in IDL and ODL, you can use C/C++ style structs, as
in the example above which shows the definitiomafeValueStruct ~ for

storing name-value pairs; (a location for defining structs local to the module
TABLE1_Module is noted in the comments of the ODL sample above).

Naming Conventions and Guidelines

Although IDL and ODL are both case-sensitive, don’t use mixed upper-and-
lower-case names as an attempt to give uniqueness to your event, interface, or
module names: Many operating systems, including Windows NT Server, are not
case sensitive at the lowest levels. To avoid potential naming conflicts, make each
event name unique.

In addition, when defining IDL for events, connector developers should:
® Group related events into the same interface

® Reuse events and types whenever possible, rather than creating new ones. For
example, use the standard events and types provided by Vitria found in
basicEvents.idl.

BusinessWare Connector Programming Guide

Defining Event Interfaces

CREATING STUB FILES

An IDL file provides the basis for creating Java or C++ stubs which can be used
by a flow at runtime to derive the metadata needed to create an event. To create
the stubs, developers can use the utility progracetipgen andjstubgen),

which basically function as pre-compilers on the IDL to create various class files,
helper files, and other programming-language-specific source code (at least four
files are usually generated.)

As discussed iflEvent Handling (Target or Source-Target Flow Only)” on
page 50you can implement the interface in your flow and use tryDispatch()
deconstruct the EventBody before pushing it onward.

SeeBusinessWare Programming GuidedBusinessWare Programming
Referencdor more information about cstubgen and jstubgen.

REGISTERING AND USING METADATA

Custom metadata is avaialable to the system after it has been imported and
registered with BusinessWare repository. To import and register metadata, you
can:

® create an .inithat includes a calladdTypeToRegister method, passing
in the name of the IDL file

® use the importidl command (if the IDL or ODL has been generated
automatically, you must use this approach rather than using an .ini file).

SeeBusinessWare Programming Referefaeinformation about using
importidl. See“Creating the Initialization (.ini) File” on page 1(fbr
additional information about creating and using .ini files.

Once the IDL (or ODL) metadata is loaded into BusinessWare it will become
available on the Console.

69

PROVIDING AN IDL (OR ODL) GENERATOR WITH CUSTOM
CONNECTORS

Defining events using IDL or ODL for external systems that have hundreds of
objects is best done programmatically, by a generator tool that can query the
external system’s metadata and convert it to IDL or ODL automatically. As a
connector developer, you might want to provide such a tool with your connector,
in which case you should think about the topics covered in this section.

Creating a User Interface Tool for the IDL/ODL Generator

If an external system contains a large amount of metadata that must be imported,
you should create a user interface (Ul) tool to simplify the process of selecting
subsets of metadata from among a potentially large number of objects.

Forinstance, an SAP system exposes over 200 BAPI objects and 400 IDOC types;
importing every object into BusinessWare would be inefficient if you only need

to use afew of them. In cases like this, you can create a wizard-like Ul that enables
business analysts to select the subset of metadata for which they want to generate
events.

Be sure to provide some sensible options: making end-users choose just a few
items from an extensive list is just as cumbersome as making end-users list
hundreds of items. In short, connector developers should create a simple user
interface tool to let end-users simply and easily choose components from the
external system that should be input to the IDL/ODL generator.

Mapping External Datatypes to IDL (or ODL)

Data types in an external system do not always neatly map to the primitive types
natively supported in IDL or ODL; for example, DateTime is a native RDBMS
data type, but not a native IDL type.

Connector developers should provide a mapping from the external system’s data
type to an IDL or ODL data type (in the case of the example, creating an IDL/ODL
struct to represent the DateTime format).

BusinessWare Connector Programming Guide

Defining Event Interfaces

Extracting Metadata From the External System

If the external system exposes a native metadata API, you should use it whenever
possible to programmatically extract metadata from the external system. If the
system doesn’t expose an AP, you'll have to use another approach to getting the
metadata. For example:

e |[f the external system is ORB based, it may expose a CORBA IFR (Interface
Repository) object that you can use to query metadata.

® For an RDBMS based system, try extracting catalog information.

® For a mainframe based system, write a parser to extract metadata information
from COBOL copy books.

Creating Metadata for BusinessWare

Developers can create metadata for BusinessWare in one of two ways: by using
the BusinessWare metadata API, or by generating an IDL/ODL file. (End-users or
developers can also use the Console to create metadaBysieess\Ware

Metadata Guiddor additional information.) Generating a file is easier to
implement and debug than using the BusinessWare metadata API, so Vitria
recommends that only advanced developers use BusinessWare metadata API.

Implementing the Generator

You can implement the generator as a command-line program or as a pluggable
BusinessWare Ul component. If the generator uses pluggable Ul components
such as event panels, the generator can be launched from within the BusinessWare
Console. Otherwise, for stand-alone programs, the user must run the program
from the command prompt or a Unix shell. S@gsinessWare Programming
Referencédor additional information.

PROGRAMMING TECHNIQUES FOR WORKING WITH EVENTS

As mentioned throughout this guide, one of the major tasks a connector flow must
perform is constructing events from (or deconstructing an event into) its
constituent elements (as they exist outside of BusinessWare).

If stubs are available, you should use tryDispatch when receiving events (see
“Creating Stub Files” on page &hd“Event Handling (Target or Source-Target
Flow Only)” on page 5)) theEBank Connector Sampd&iows you how to use this
recommended approach.

71

The Simple Connector Samppeovides an overview of two approaches for
sending an event by using methods from the JctLib (Java channel toolkit library)
class (com.vitria.jct.JctLib) and from the meta object library
(com.vitria.fc.meta.EventDef), as discussed briefly in the remainder of this
chapter.

Here’s the complete IDL for the SampleEvents interface (frontineple
Connector Samp)eThis IDL file defines an event calledhteEvent that
comprises three IDL typesstring , long , andlong long ;the equivalent Java
types arestring , int , andlong , respectively.

module myEvents {

interface SampleEvents o
event void dateEvent(in string name, in long id, in long long date);

)

k

The listing below shows one approach to sending events of the type defined in
myEvents.SampleEvents. An encoder is constructed by given an interface name
and the connector flow (“this”) ; it then returns an object that implements all the
event methods in that interface, calling these methods (for example, dataEvent())
automatically pushes the event:

'p“rivate SampleEvents sampleEvents_;

publlc void |n|éSampIeSourceDef def, FlowEnv env) {
super.init(def, env

sampleEvents_ = (SampleEvents)(JctLib.encoder(this, "myEvents.SampleEvents"));
public void doWork() {)) .
sampleEvents_.dateEvent(name_, id_, System.currentTimeMillis());

The listing above shows excerpts of the encoder being initialized in the init()
method with all the events defined myEvents.SampleEvents . This

encoder is then called in doWork to create a dateEvent with the parameters name_
and id_; the current date is obtained using a method from the standard Java class
library. Once the encoder creates the event, it automatically passes it to the target
list of the connector.

72 BusinessWare Connector Programming Guide

Defining Event Interfaces

To create the event directly, you can pass the data and the metadata (definition of
the data) for the event to tleeeateEventBody() method (in
com.vitria.jct.JctLib), as shown in the listing below.

b“rivate void_sendEvent() {
Object[] params
ame

params[0] =
params[l] =
paramsf2] =
EventDef eDef =

(
(SampleEventsHelper

new Object[3];

new Mteger(id); o
new Lor:&(System.currentTlmeMlllls());

ntDe
.getMetaObject().findDef("dateEvent"));

EventBody eb = JctLib.createEventBody(eDef, params);

doPush(eb);

BusinessWare events are objects created fronEttemtBody class
(com.vitria.fc.flow.EventBody). Metadata is used to create an
EventBody; metadata can also be used to get an event’s specification in the format
of a Java String.

In the listing above, an EventBoahp is created by using the metadata stored in
theeDef variable; the data itself is stored in therams variable (the array); the
variableeDef is anEventDef object containing metadata.

ThefindDef method, called on a meta object, returns the metadata for an event.

The meta object is obtained by calling thetMetaObject method in the

SampleEventsHelper. (When you run this IDL file through the pre-

compiler (jstubgen), the result is four files, including

SampleEventsHelper.java , a helper class that is used for marshalling and

unmarshalling objects ahyEvents.SampleEvents type.)

To use the EventDef object, you must import theentDef class as follows:
import com.vitria.fc.meta.EventDef;

Here’s a summary of the steps involved with this approach:

® Create an object array that holds data to send in the event

® Create an EventDef to encapsulate the metadata about the object

® Use JctLib to wrap the data and metadata in an EventBody

Review theSimple Connector Sampd@dEBank Connector Sampler complete

code listings and discussions of alternative ways of obtaining metadata and using
it to create or deconstruct events. Also BesinessWare Programming Guided
BusinessWare Programming Reference

73

74

BusinessWare Connector Programming Guide

WRITING A TRANSACTION RESOURCE

This chapter tells you how to create a transaction resource for a connector flow.
In the first part of the chapter, you'll find information about transactions and
programming strategies; in the second part of the chapter, you'll find the details
about how to write the actual code for a transaction resource. The chapter includes
the following topics:

® Overview of Transactions

® How the Transaction Service Processes Transactions
® \Writing a Transaction Resource for a Flow
°

Methods Available to Transaction Resources

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sample

OVERVIEW OF TRANSACTIONS

In simple terms, &ransactionis alogical unit of work;it may encompass a single
task or several tasks, but as a logical unit, all tasks—whether one task or dozens—
must complete in their entirety, or none should complete at all.

For example, when a bank transfers funds from a savings account to a checking
account, it must decrease the savings accandincrease the checking account,

or leave both accounts alone; otherwise, the banks books—and the customer’s
accounts—will be out of balance.

In a distributed computing environment, in which accounts (and resources in
general) reside on completely different systems, ensuring that transactions always
complete successfully is challenging for many reasons, but a solid approach to
ensuring that they do is by usingransaction servic¢hat implements thewo-

phase commit protocol

As discussed ifiSupporting Infrastructure” on page 9itria provides such a
transaction service to manage transactions for connectors and connection models.
If you want to ensure that a transaction within any flow is managed by this
Transaction Service, you must create a transaction resource for the flow, as
detailed in this chapter.

75

THE TRANSACTION SERVICE

Each connection model has an associated Transaction Service that handles
transactions across all flows in the connection model; the Transaction Service is
necessary because the individual flows that comprise a connection model are
unaware of each other. (Flows are reusable components, which means a specific
flow type may be configured and used differently in different connection models.)

When a connection model is started, each flow that participates in transactions
creates an object calledimnsaction resourcand passes it to the Transaction
Service. Thus, the Transaction Service is aware of all the flows in a connection
model that need to participate in transactions.

The Transaction Service for the connection model coordinates transactions across
the model; however, the responsibility for ensuring that data is saved lies with
each connector’s transaction resource.

THE TRANSACTION RESOURCE

Every connector that participates in transactions must have a transaction resource
that calls the appropriate methods to handle transactions in the external system at
the direction of the transaction service.

The code you write for the transaction resource must include methods that the
transaction service invokes at runtime to instruct the resource to get ready to
commit (precommitResource or prepareToCommit, as showalie 8-2and
Table 8-3 on page §8and to commit or abort the transaction, depending on the
outcome of the precommitResource or the prepareToCommit.

The Transaction Service relies on the transaction resource of each flow in a
connection model to implement the appropriate methods on the external system's
API to commit data or abort processing. However, the transaction resource can
only guarantee data to the extent that the API can guarantee it, and that depends
on whether the external system provides API for one-phase or a two-phase
commit protocol, as discussed in the next section.

ONE-PHASE AND TWO-PHASE COMMIT PROTOCOLS
As introduced irf‘Transaction Architecture” on page 1the transaction service

associated with each connection model can support both one- and two-phase
transactions.

BusinessWare Connector Programming Guide

Writing a Transaction Resource

To recap:

® Two-phase transaction resources, which support a two-phase commit
protocol, can guarantee that a commit will succeed because of a ‘pre-commit’
stage. If an external resource is two-phase, the transaction service relies on the
transaction resource to guarantee successful commits once a transaction
resource has successfully passed a “pre-commit” stage.

® One-phase transaction resources, which do not have a pre-commit method,
cannot guarantee that a commit will succeed. At most, a single one-phase
resource can participate in a transaction.

The two-phase approach is preferred because it can guarantee that a transaction
will complete after a ‘pre-commit’ phase has been passed (discussed in more
detail in the next section); it ensureace-and-only-oncdata delivery. If the

external system supports two-phase commit protocol, you should create a
transaction resource that implements the protocol.

If the external resource supports a one-phase protocol, there are techniques you
can use to ensure once-and-only-once data delivery, or at-least-once data delivery,
as discussed itRobust One-Phase Transaction Resources” on page 80

How THE TRANSACTION SERVICE PROCESSES TRANSACTIONS

As mentioned earlier, when the Flow Manager instantiates the flows in a
connection model at runtime, each flow that has a transaction resource associated
with it adds the resource to the transaction service. The flows begin processing
events through the model in whatever manner they’ve been configured to do so,
and the transaction service does little until one of the flows signals a commit.

Given the nature of the underlying BusinessWare connection model architecture,
the source flow should initiate the commit: processing in the context of a
connection model traverses from flow to flow, and it’s only when the underlying
push() returns to the source flow that processing (in the context of the entire
model) is complete; se@hapter 2, “Architecture Overview.”

A standard source flow includes a check on the value ottmemitAfter_

boolean; if set to “True” (by the end-user through the Console or
programmatically), the source flow calls commit on the transaction service. The
commitAfter_is a member of the BaseConnector class, from which all connector
flows inherit basic characteristics; the default value is false.

77

(See“Checking value of commitAfter " on page 5dr additional information
about including this call in a source connector flow.) The sequence of steps
involved with committing a transaction is as follows:

1.

Thi

A source flow withcommitAfter_
on the Transaction Service.

property set to true callsommit()

The Transaction Service cafgepareToCommit() on the one-phase
transaction resource (if a one-phase resource exists in the model). This tells it
to get ready for a commit and determines whether a commit is likely to
succeed. IprepareToCommit() returns the active transaction ID, a

commit will probably work, and the Transaction Service goes to the next step.
If prepareToCommit() returns null, the Transaction Service gives up and
the transaction is aborted.

The Transaction Service cafsecommitResource() on all the two-

phase transaction resources. If any of two-phase resource returns null (or
doesn’t return anything) the Transaction Service gives up and the transaction
is aborted.

The Transaction Service then stores all active transaction IDs in the repository.

The Transaction Service catemmitResource() on the one-phase
transaction resource. If an error occurs, the Transaction Service gives up and
the transaction is aborted.

The Transaction Service catemmitResource() on all the two-phase
transaction resources and the commit is complete.

s process is summarized in the table below:

Table 8-1 Process Initiated when Source Flow with “commitAfter_” Set to
“True” calls commit on Transaction Service

Transaction Service

Two-Phase Resource (One-Phase Resource (1)

n)

1. Calls prepareToCommit() on

2. Returns null or active transaction

one-phase resource ID
3. Stops if receives null, or

continues.

4. Calls preCommit() on all two- |5(n) Each two-phase resource
phase resources returns an active transaction ID or a

null

6. Halts processing if any null
received (or no response);
otherwise, continues processing

7. Stores all active transaction I[

S

78

BusinessWare Connector Programming Guide

Writing a Transaction Resource

Table 8-1 Process Initiated when Source Flow with “commitAfter_" Set to
“True” calls commit on Transaction Service (Continued)

8. Calls commitResource() on oTe— 9. Commits (returns true to
phase resource usingits transaction transaction service if successful
ID

10. If one-phase has committed |11(n) all commit
successfully, then calls
commitResource() on each two-
phase resources using their
respective transaction IDs

Failures can occur at any stage of processing, so another major role of the
transaction service is recovering from a system failure in the midst of a transaction
and determining how to proceed, as discussed in the next section.

HOw THE TRANSACTION SERVICE HANDLES FAILURES

When there’s a system failure, the specifics of how the transaction service handles
the recovery process will vary, depending upon whether the specific connection
model includes only two-phase resources, or includes a one-phase resource.

e |[f only two-phase resources are involved, and if not all two-phase resources
have pre-committed, the transaction service will let the transaction resources
simply time-out; the distributed resources will be returned to a consistent state
automatically.

e |[f a connection model includes a flow with a one-phase transaction resource
(in addition to two-phase resources), and the system crashes after the
prepareToCommit was called on the one-phase resource but before the
precommitResource had been called on the two-phase resources, then the
transaction service recovers by first calling getPrepareStatus (on the one-
phase resource using the stored active transaction ID).

m If the one-phase resource returns COMMITTED, then the transaction
service can continue with the precommitResource on the two-phase
resources.

m If the getPrepareStatus returned PREPARED, then the transaction service
will abort the transaction.

79

In this way, the one-phase transaction resource and the two-phase transaction
resources can be involved in a transaction across the same connection model.
However, since one-phase resources do not guarantee that commits will occur
after the prepareToCommit method has been called, there techniques you should
consider using in your one-phase transaction resources to ensure data delivery, as
discussed in the next section.

ROBUST ONE-PHASE TRANSACTION RESOURCES

80

The two-phase commit protocol is the preferred way to handle transactions
because it guarantees once-and-only-once data delivery. But not all external
systems support the two-phase commit protocol. If you must write a one-phase
resource, you can ensure once-and-only once data delivery by using some of the
techniques discussed below (if the external API provides a transaction ID or you
can add data in the context of a transaction). If the external system doesn’t support
atransaction ID or other marker, or let you add data in the context of an in-process
transaction, you can still ensure at-least-once data delivery by using the technique
described ifOne-Phase Transaction Resources without Status Information” on
page 83

ONE-PHASE RESOURCES THAT IMPLEMENT STATUS
INFORMATION

If the resource provides a transaction ID, you should use the transaction ID (or
some other identifier as part of its commit protocol), you can use this transaction
ID to ensure once-and-only-once data delivery. For example, the external API for
theEBank Connector Samp#eipports one-phase transactions and provides an
xid, as shown below:

public EBankServer() {

accounts_ = new Hashtable();
xids_ = new Hashtable();
xidCounter_ = 0;

private synchronized int nextXID(){
xidCounter_++;
return xidCounter_;

}

/I transactions
public int prepare(){

BusinessWare Connector Programming Guide

Writing a Transaction Resource

int xid = nextXID();
xids_.put(new Integer(xid), commands_);
commands_ = new ArrayList();
return Xxid;
}
public boolean committed(int xid) {
Object transaction = xids_.get(new Integer(xid));
if (transaction == null){
return true;
}
else {
return false;
}
}

public EBankServerModule.Result commit(int xid){
/I all or none - here we go
List | = (L ist) xids_.get(new Integer(xid));
if (I == null){
return EBankServerModule.Result. UNKNOWN_TRANSACTION;
}

As the listing above shows, the EBank server exppsepare() ,
commit(), andcommitted() API, whichinclude axid parameter; this xid
is used in the EBank transaction resource (as shown in the next code listing).

The transaction resource returns a byte array that corresponds to the xid (the code
that converts the xid into and out of this array is not shown below). To signal a
failure, the transaction resource returns null. It provides valuable information
about the status of the current transaction, and will be used by the transaction
service to perform the actual commit (or abort the transaction if there’s a failure).

Here’s an excerpt showing the transaction ID being passed as part of the
prepareToCommit logic from thEBank Connector Sample

publlc b te|E prepareToCommit(){
(Yo evel >= Diag Lo%gerVERBOSE){
ConnectorWIessages logPrepareToCommit(logger_,
EBankTargetConnectorMessages.baseid);

ByteArrayOutputStream baos;

y {
I caII prepare on the ebank connection and grab the xid
BankConnection conn = connector_.getConnection();
|nt xid = conn.prepare();

81

catch(Exception iox) {)
if iogLeveI_ >= DiagLogger.ERROR){])
BankTargetConnectorMessages.logErrorPreparing(logger_, iox);
return null;]
/I convert byte array back to xid

When the transaction service cgtisepareToCommit on the transaction
resource, the transaction resource calls the external gxBpére) on the

EBank connection. When the Transaction Service calls this transaction resource’s
commitResource() method, the transaction is committed. (See the code for
the transaction resourceé TargetResource.java or EBankTarget.cxx
andEBankTarget.hxx) from EBank Connector Sampler complete details.)

The EBank Connector Sampiensaction resource also uses this transaction 1D

to determine if a COMMIT actually did succeed or not, as shown in the next
excerpt. The getPrepareStatus method gets called (by the transaction service) for
purposes of determining the status of the last transaction; the method passes the
byte[] that was returned in prepareToCommit (some of the conversion and
logging code is not shown).

public int getPrepareStatus(byte[] id){
if (logLevel _ >= DiaglLogger.VERBOSE)

ConnectorMessages.logGetPrepareStatus(logger_,
EBankTargetConnectorMessages.baseid);

}

/I convert the byte array back into an xid
if (logLevel_ >= DiagLogger.TRIVIA){
try {
EBankConnection conn = connector_.getConnection();
/I get the status of the xid
if (conn.committed(xid)){
/I we committed the last transaction successfully
out = OnePhaseResource. COMMITTED;
}
else {
/I we did not commit the last transaction successfully
out = OnePhaseResource.PREPARED;

}
}

82 BusinessWare Connector Programming Guide

Writing a Transaction Resource

If the external APl doesn’t provide this level of support for transactions, you may
still be able to ensure robust once-and-only-once data delivery if the external
system lets you add data in the context of the current transaction, as discussed in
the next section.

No Transaction ID API in External System

If the external API doesn’t provide a transaction ID or other status flag in the
context of a commit method, but the external system lets you add data within a
transaction, you may still be able to ensure once-and-only-once data delivery for
a one-phase resource. For example, Vitria’'s RDBMS source connector stores the
database transaction ID inGONNECTORCOMMIT&ble, as part of the

transaction that’s in-process.

If a system crash occurs during the commit, the Transaction Service calls the
transaction resourcegetPrepareStatus() method during recovery. The
Transaction Service checks for the piece of data saved in the
prepareToCommit() and if the data exists, the Transaction Service knows
that the transaction committed—if it hadn’t the data wouldn’t exist, because all
the work in a transaction succeeds or fails.

If the data doesn’t exist, the transaction service knows the transaction failed, and
the event is processed again.

ONE-PHASE TRANSACTION RESOURCES WITHOUT STATUS
INFORMATION

If the external APl doesn’t provide a transaction ID and you cannot add data
concurrent with an in-process transaction, you won't be able to determine if a
commit succeeded or not in the event of a system crash during the commit stage.
In such cases, you can code your one-phase resources to return default status
values, as follows:

® Always return COMMITTED for a source connector flow

® Always return PREPARED for a target connector flow

These guidelines ensure that you'll proviateleast-oncealata delivery for flows

that have one-phase resources (which are unable to use the techniques discussed
in the previous section). The rationale for this approach is discussed in the next
sub-section.

83

84

Transaction Service and getPrepareStatus()

Between the time the Transaction Service issues a commit() and the time all
resources actually commit, there's always the possibility of a system failure.
When the system restarts, the transaction servicegetiRrepareStatus()

method on the one-phase resource in the model for which it was processing a
transaction. ThgetPrepareStatus() method returns only one of two
values—COMMITTED or PREPARED—and the transaction service takes its
next step based on this information.

e |[f the transaction service receive €COMMITTEDrom a resource, it assumes
the data (event) was committed successfully, and it continues processing the
current transaction; the event is not dropped.

o |[f the transaction service receivBEREPAREDrom a transaction resource, it
assumes that the commit did not succeed and it aborts the current transaction;
drops the event; and attempts to re-process the transaction again.

In the case of a source connector flow, which picks up data from an external
system and sends data in event form into the model, returning PREPARED if the
commit completed can result in data loss if the commit actually succeeded
because when a commit completes, the data in the external system is deleted and
the event containing the data is dropped. So when the transaction service receives
a PREPARED and it aborts the current transaction and attempts to process the
transaction again, the data is no longer available on the external system. That's
why you must return COMMITTED for a source flow; if the commit really failed,

the data still exists and will simply be re-processed.

The opposite is true of a target connector flow, which receives events either
directly (or indirectly, through other flows in a model) from a BusinessWare
channel and ultimately inserts them into an external system. In the case of a target
connector flow, you should always return PREPARED. When you return
COMMITTED for a target flow, the transaction service assumes the event has
traversed the connection model succesfully, so it notifies the channel server,
which then delivers the next event in the list.

If the commit had in fact failed, however, and the data wasn’'t saved to the external
system, then the event is gone. That's why you must return PREPARED for a
target flow; if the commit had succeeded, the data is saved in the external system
and event will be re-processed, possibly resulting in a duplication of data—but
again, data loss is anathema to a transaction processing system: at-least-once
delivery is preferred over data loss.

BusinessWare Connector Programming Guide

Writing a Transaction Resource

WRITING A TRANSACTION RESOURCE FOR A FLOW

To create a transaction resource for a connector flow, you must first analyze the
external system’s API and determine if it supports transactions; if it does, you
must next determine if the transactions are one-phase or two-phase. With an
understanding of the external transaction API, you can then write a Java class for
the transaction resource (or a C++ class, if your connector flow is C++ based) that
implements the transaction logic, using one of the approaches discussed earlier in
this chapter.

Once you have the transaction resource written, you'll associate the resource with
the flow by making the appropriate call in your Flow source’s initialization

section (se€hapter 5, “Writing Java Connectorst Chapter 6, “Writing C++
Connectorsfor additional details about writing code for the Flow.) These tasks
are detailed in the next two sections.

WRITE THE TRANSACTION RESOURCE

The transaction resource is a runtime object that gets instantiated by the flow and
then passed to the BusinessWare transaction service.

Code for the transaction resource includes calls that implement the external
system’s transaction API, that is, calls to commit or abort transactions. The
connection to the external system is made in the flow itself (in the startEvents()
method), and this connection is passed to the transaction resource in the
constructor, as you'll see in the code below.

Import Transaction APIs

Here’s a step-through of the Java version of the transaction resource B dimé
Connector Sampjehis transaction resource is added to the transaction services
from the Javatarget flow. The code starts with the package name (your transaction
resource should be part of the same package as the def, rep, Beaninfo, and the flow
itself). The code begins with these standard imports:

import com.vitria.fc.trans.*;

import com.vitria.fc.io.*;

import com.vitria.fc.data.*;

import com.vitria.fc.diag.*;

import java.io.*;
Next, the API of the external system is imported; in addition, this transaction
resource takes full advantage of the EMT Framework, so those classes are

imported as well:

import EBankAPL.*;
import ebanklocale.*;

85

import com.vitria.msg.ConnectorMessages;

The external API supports only a one-phase commit, so the class implements this
interface, as shown in the code below. Also note the calls to the logger in this
listing. (Se€'Methods Available to Transaction Resources” on pagéo87

discussion and comparison of the one-phase resource methods and the two-phase
methods.)

public class ETargetResource implements OnePhaseResource{
private DiagLogger logger_; // for logging
private int TogLevel_; /I for logging

Connect to the External System

Some external systems, such as databases, implement transactions within the
context of a connection, in which case the transaction resource must share the
connector’s current connection to the external system; this is the case in the code
below (theconnector_ variable is used to access the connection to the EBank
server).

|'d'rivate EBankJavaTarget connector_;

public ETargetResource(DiagLogger |, int logLevel,
public byte prepareToCommlt%)
if (logLevel _>= DiagLogger.VERBOSE){
ConnectorMessages.logPrepareToCommit(logger_,
E?ankTargetConnectorMessages.baseld);

ByteArrayOutputStream baos;

try {
/I call ‘prepare_on the ebank connection and grab the xid
EBankConnection conn = connector_.getConnection();
int xid = conn.prepare();

if élogLeveI_ >= DiagLo%Ager.TRIVIA){]
) BankTargetConnectorMessages.logXID(logger_, xid);

SeeEBank Connector Sampte review the full code listing for the transaction
resource. Again, the majority of the code in any transaction resource will be
specific to the external transactional APl and how commits and aborts are
handled. Se&Robust One-Phase Transaction Resources” on pader80

information about ensuring that one-phase resources provide once-and-only-once
data delivery, or, if need be, at-least-once data delivery.

BusinessWare Connector Programming Guide

Writing a Transaction Resource

INITIALIZING THE TRANSACTION RESOURCE IN THE FLOW

To add a transaction resource for your connector to the Transaction Service, you
must make a call in thimit() method in your flow code, as shown in this
excerpt from EBankJavaTarget.java, #iBank Connector Sample

public void init(EBankJavaTargetDef d, FlowEnv env){
super.init(d, env);
iorFile_ = d.getlorFile();

ETargetResource res = new ETargetResource(logger_,
logLevel_, this);

ConnUtil.addResource(res, service_);

}

SeeChapter 5, “Writing Java Connector@&r Chapter 6, “Writing C++
Connectors) for more information about referencing the transaction resource in
the code for your flow.

METHODS AVAILABLE TO TRANSACTION RESOURCES

Methods to use for a Java transaction resource (from the
com.vitria.fc.trans package) are shown in the two tables below.

Table 8-2 One-phase Methods

Method Description
prepareToCommit() Returns transaction ID
commitResoura@ Commits the transaction
abortResource() Kills the transaction
getPrepareStatus() Returns a COMMITTED flag if the

transaction has committed and returnis
a PREPARED flag if the transaction
has not yet committed

87

88

Note that although the one-phgsepareToCommit() method and the two-
phasgrecommitResource() method return the current transaction ID to the
transaction service, these methods do not provide an equal measure of assurance
that the transaction will complete after these respective calls are made. By
definition, a two-phase commit API provides a guarantee that after a successful
precommitResource, the commit calls will succeed, even in spite of a system
failure. If the external system provides a two-phase commit protocol, then it
provides this guarantee.

Table 8-3 Two-phase Methods

Method Description
precommitResource() Returns transaction ID and prepares
the system for a commit
commitResource() Confirms the transaction
abortResource() Kills the transaction

BusinessWare Connector Programming Guide

HANDLING ERRORS

Your connector flow must include code to handle erroneous data and unexpected
situations. This chapter provides information about how to log and handle errors;
topics include:

® Sending Error Messages to the Log File

® loglevels

SENDING ERROR MESSAGES TO THE LOG FILE

All connector flows inherit from the BaseConnector class, which provides utility
methods for logging and exception handling; BaseConnector class implements the
DiagLogger interface. DiagLogger contains a set of six log levels, from NONE to
TRIVIA, as discussed in the next section.

LOG LEVELS

The DiagLogger interface (imported in the BaseConnector) provides the
following constants to decide how much information gets written to the log. The
log level is a given property; end-users can set the log level for a flow on its
property sheet (in the Console):

Table 9-1 Log Levels

Log Level Description

NONE (0) Perform no tracing at all under any circumstances.
ERROR (1) Log serious errors and exceptions.

WARNING (2) Log warnings and other questionable situations.

NORMAL (3) Log major occurrences, such as startup and administrative

changes (not event-based). Adds little or no performance overhead
and should produce little output if the application is well designed.

VERBOSE (4) Log every system occurrence, typically pre-transition or per-
event. Adds some performance overhead.

TRIVIA (5) Log all available information. Can negatively affect
performance (by adding to overhead). Restrict use to debugging.

89

In the code you write, you can check the log level before writing out a message to
the log or elsewhere. For example, the following statement ensures that only
actual errors (in the application) or Java exceptions trigger whatever follows,
specifically, the message writing.

if (logLevel >= DiagLogger.ERROR) ...

On the other hand, a logLevel >= DiagLogger.TRIVIA would capture an
extensive amount of information, potentially causing a performance bottleneck,
(depending on the context of the rest of code in which it's embedded).

The actual text of the messages that get generated by these log levels depends on
what you provide; setlJsing the EMT Framework for Log Messages” on

page 92. The logLevel constants provide an arbitrary range that you must provide
for in your own connector by creating the appropriate message text.

LOGGER_

The BaseConnector also providdsgger object; use this object to send error
and informational messages to the log file. Your code should include a check for
the log level setting (of the connector at runtime, since end-users of your
connector can alter this in the Console), as shown in the excerpt below:

bﬁblic void startEvents(){

If (logLevel >= DiagLogger.ERROR){)
Conn_)ectorMessages.IogStartmg(Iogger_, EBankSourceConnectorMessages.baseid,
name_);

Within theif statement in the listing above, a message will be sent to the logger
when the connector flow is started and attempts to connect to the external system
(the EBank server); the log will identify where the error occurred (logStarting).

Your code must import the DiagLogger interface as follows:
import com.vitria.fc.diag.DiagLogger;

The next code listing includes the entire startEvents method, with additional error
checking and logging code:

if (logLevel_ >= DiagLogger.ERROR){)
SonnectorMessages.IogStartmg(Iogger_, EBankSourceConnectorMessages.baseid,
name_);
}

try {

20 BusinessWare Connector Programming Guide

Handling Errors

connection_ = new EBankConnection(new File(iorFile));

| STANDARD throw DiagError in startevents when encountering a failure
catch (Exception e){
Diagnostic d =)
gomnc]s)n BankConnectorMessages.createErrorConnecting(EBankSourceConnectorMessages.
aseid);
logger_.write(d);

/I wrap the diagnostic in a DiagError and throw it
throw new DiagError(d);

Here’s the comparable code from the C++ version of the source connector flow.
In this listing, you see that the FlowBridge API (the C++ wrapper that enables a
C++ flow to cross the C++/Java boundary) is used to write out the log messages;
for exampleflowbridge logmessage(VTTRACE_ERROR, this,

diag) andflowbridge logmessage(VTTRACE_ERROR, this, diag)

void EBankSource::startEvents(_Ix_Env& _env) {

_ VTDiagnostic* diag;))

dla% = ConnectorMessages::createStarting(EBankSourceConnectorMessages::baseid,

"EBankSource");))
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

/I try connecting
if §!connectlon_->connect()){
/ could not connect!

diag =
th))mmg;]EBankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid);

flowbridge_logmessage(VTTRACE_ERROR, this, diag);

/I set exception so we don't start up

VTDiagError * err = VTDiagError::create(_ FILE_ , _ LINE_
th))mmg;]) BankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid));

_env.exception(err);

return;

This is just a short example. Review the code listings for both C++ and Java
connector flows irEBank Connector Sampter more details about how to use
these call in your own code.

See"C++ API Summary” on page for all FlowBridge methods.

91

USING THE EMT FRAMEWORK FOR LOG MESSAGES

92

The EMT (Error, Messaging, and Tracing) framework is provided in
BusinessWare to handled messages of all types, including error, trace, and log
messages{he EMT (Error/Messaging/Tracing) Framework” on pagies
additional background information).

The EMT Framework enables fast and easy localization and internationalization
because it provides a complete infrastructure for generating text messages; it also
provides the underlying facilities for handling all these messages in your code, by
means of a “resource bundle,” which includes C++ stubs (that provide the link
between between your text and BusinessWare), Java, C++, or both

The resource bundle is specific to any BusinessWare application, including
connectors. Developers writing custom connectors must create a resource file,
generate the stubs and database of message text (which will be used at runtime),
and generate C++ header files or Java class files (or both, if you're creating a
connector flow that will have both types of flows). In the source code for the flow
Rep you then load the resource bundle as explainéddad the Locale Bundle

for the EMT Framework” on page 34

During the development process, you'll likely want to simply use placeholder type
messages, and develop the actual resource bundle when all the other technical
issues are complete. For final code, you should use the EMT Framework. See the
BusinessWare Programming Guifte more information.

BusinessWare Connector Programming Guide

10 MISCELLANEOUS DEVELOPMENT ISSUES

This chapter discusses:
® Customizing Methods
® Multi-threaded Subscriber

® Request-reply (Synchronous) Processing

CUSTOMIZING METHODS

In most connection models, events sent by the flow source or received from a
channel are notin the appropriate format. For example, ISAM (indexed sequential
access method) file data isn’t structured as events, and must be transformed into
events usable by BusinessWare. Transformer flows modify events into the format
needed. BusinessWare provides several standard transformer methods; see
BusinessWare Connection Modeling Guideinformation.

Developers can also write custom transformer methods for several of the built-in
source-target flows, specifically, the Simple Data Transformer, Simple Router,
Nested Router, and Multi-threaded Subscriber, as discussed in this section.

Before writing a custom transformer method, you must define:
® Event interfaces that the transformer method will handle
® Action to be taken for both expected and unexpected events

® Data to be returned after event processing.

Your code can return a single event; an array of events; or null (in which case the
event is dropped).

WRITING THE METHOD IN THE JAVA CODE EDITOR

You can write the code by using the Java Code Editor, which is a feature of the
BusinessWare Console. The advantage of using this editor is that issues such as
class names, classpaths, saving, compiling, and registering in the namespace are
taken care of for you—you write the method body only in the Java Code Editor
dialog box.

93

The method takes an EventBody as a parameter. If the method is part of a Simple
Data Transformer, it returns another EventBody, otherwise it does not.

Clicking the Register button in the Java Code Editor compiles the class containing
the method and registers the class in BusinessWare. The new class will be
displayed in the Simple Data Transformer’s Processing tab (via the Console).

See theBusinessWare Connection Modeling Guidedetails about using the
Java Code Editor. Review the next section to gain an understanding of how to
write the custom method.

WRITING THE CODE MANUALLY

To write the code externally—outside the BusinessWare Console and Java Code
Editor—you must write a traditional Java class file, with package name, imports,
and the like.

After you have written and tested your code, you can register it with
BusinessWare, as discussedRegistering Custom Methodsbelow. (As with

other Java class files for flows, you must put the transformer class in the system’s
CLASSPATH for Java classes.)

The next several sub-sections step through the process of writing a custom method
for the Simple Data Transformer.

CUSTOMIZING METHODS FOR THE SIMPLE TRANSFORMER

For the Simple Transformer, the class must have these imports:

com.vitria.fc.data.*;

com.vitria.fc.io.*;

com.vitria.fc.flow.*;

com.vitria.fc.diag.*;

com.vitria.msg.*;

com.vitria.fc.meta.*;

com.vitria.fc.record.*;

com.vitria.jct.JctLib;
com.vitria.connectors.datalators.simpletranslator.*;

The four method signatures you can use for a custom transformer method are as
follows:

e myMethod(EventBody e€)
e myMethod(EventBody e, String [] s)

BusinessWare Connector Programming Guide

Miscellaneous Development Issues

® myMethod(EventBody e, String [] s,
SimpleTranslatorinterface sti)

e myMethod(EventBody e, SimpleTranslatorinterface sti)

Each of these can return either an EventBody or an EventBody array. If the
returned EventBody reference is null, the event is dropped.

Writing the Custom Class

You can create custom transformer classes that contain any number of methods
that perform different data transformations. Placing multiple methods in one class

groups them all in one file and separates the transformation logic from the
connector flow code.

To facilitate re-use, group multiple translator methods in their own class.

Here’s a walk-through of a transformer class (from$imple Connector Sample
that has two methods; one convattdeEvents tostringEvents |, the other
convertsstringEvents to dateEvents

The following IDL code defines dateEvent

module myEvents {
interface SampleEvents {)] o
event void dateEvent(in string name, in long id, in longlong date);

The following IDL code defines atringEvent
module vtEvents {
interface stringEventinterface {
event void stringEvent(in string data);

)

The following code is in thélyDataTranslator class described in tHgimple
Connector Sample

publlc EventBody dateToString(EventBody e) {
f (e. %etEventSpec() .equals(dateSpec) {
= e.getParameters();
return Jctle createEventBody(
stringEvent_, new Object[]{ p[0] + “” + p[1] + “" + p[2] }

return null;

public EventBody stringToDate(EventBody e) {

95

if (e. getEventSpec() equals(stringSpec) {
Object]] p = e.getParameters
String_inString = Strlng)(p%)])
StringTokenizer st = new trlngTokenlzer(lnStrlng, “";
if (st.countTokens(

String s1 = st next oken
String s2 = st.nextToken
String s3 = st.nextToken

return JctLib. createEventBody(
dateEvent_,
new Object[|{ sl, new Integer(s2), new Long(s3) }

}

return null;

96

Registering Custom Methods

Transformer classes and methods are displayed in the BusinessWare Console
when the Simple Data Transformer flow is configured. In order for the custom
transformer class to be displayed along with its list of available methods, the
transformer class must be registered.

Custom methods created using the Java Code Editor are automatically registered
during the compile stage; see tBasinessWare Connection Modeling Guide
details.

Custom methods created manually, using the JDK or and IDE, must be registered
in BusinessWare in one of three ways:

® From an .inifile.

m [fyou create the .ini by using the Connector Generator Tool, simply supply
the transformer class name in the .gen file (or in the Connector Generator
Wizard GUI. Seé€Using the Connector Generator Tool and the .gen File”
on page 42or details.

m |f you write a Java program to generate the .ini, call

addTranslatorLib() with the name of the transformer class and
method settings. Séddding a Transformer Class” on page 1fot
details.

e From a command line, using the TransReg utility. Briefly, you simply enter
transreg -a JavaClassNamel... at the command prompt. The
batch file (or .csh, in Unix) launches the Java SimpleTransReg program and
registers the transformer. (SBasinessWare Programming Refereffme
details about using this command-line utility)

BusinessWare Connector Programming Guide

Miscellaneous Development Issues

o From the BusinesWare Console, by entering in the class name on the
Processing Panel. See tBasinessWare Connection Modeling Guide
details.

In addition to registering the transformer class in BusinessWare, you must also
make sure the class files are located in the CLASSPATH of the machine

To use an externally-developed custom transformer method that is specified in a
call toaddTranslatorLib() in a Java program, as seen in the previous
section, perform the following steps:

1. Compile the Java file containing the transformer class and method.

2. Place the resulting class files in the CLASSPATH.

Displaying Event Lists

Atransformer flow is a source-target flow, and as with the source flows and target
flows, the event types that a transformer can send and receive can be displayed in
the Console.

types of events that a transformer flow can send and receive can be displayed in
the Console. The list of events that the transformer can sendssthee lisf the
events it can receive are tharget list

See“Creating the Java components for the Flow” in Chaptéardietails about
implementing getSourceEventinterfaceList (to display a source list) and
getTargetEventinterfacelList() to display a target list.

CUSTOMIZING SIMPLE ROUTER METHODS

The SimpleRouter is a source-target flow that enables routing of events based on
type or actual content. Simple Router has a list of potential targets; when an event
is received by the router, a user-defined method receives the EventBody aldong
with a vector of possible targets and user-configurable parameters.

The router returns a vector with a subset of targets to which it can route; the
SimpleRouter can route based on type (of event) or based on content. Developers
can use the Java Code Editor to modify routing methodsBsesemessWare
Connection Modeling Guider additional details about using Simple Router and
about using the Java Code Editor.

97

CUSTOMIZING NESTEDROUTER

The Nested Router encompasses features of both a simple router and a nested
model; that is, it receives events that it can route based on type or content, but it
routes to other models (rather than specific flows or channels). If, in the context
of a connection model, you need to direct output to multiple models, you can use
the Nested Router flow.

Use Nested Router when you need to route to numerous multiple flows or
channels. Nested Router has a “folder” property; when you place a nested router
in a model, you specify the folder in which Nested Router will look for models.

For example, you could create a folder called /users/accounting and specify this
as the folder property for a specific Nested Router. You can then use the Java
Code Editor (in the Console) to write your own code to define the target model
(for the router); the method takes in an EventBody and returns the name of a
string. For example:

String out = "VITR";

would route all events to model called VITR in folder /users/accounting.

Usage rules for Nested Router are the same as for the Nested Model; see
BusinessWare Connection Modeling Guidecomplete details.

MULTI-THREADED SUBSCRIBER

The Channel Flow source is a single instance source: it subscribes to a channel and
receives events, processing them one at a time, sending each event to its target.

The Multi-threaded Subscriber establishes a series of queues that are used by
multple instances of a connection model to read events from the channel. The size
of the queue is set by the users as is the number of instances.

The Multi-threaded Subscriber is used in multi-instance target connection models.
The Multi-threaded Subscriber uses a (key) map class to determine which queue
is read. The default class is round robin as follows

/I Always return a java.lang.Integer
Object iKey = new

Integer((int)e.getPosition()%concurrencylLevel());
You can override this method to implement your own processing order, using the
Java Code Editor. (Sd@usinessWare Connection Modeling Guideadditional
information about configuring multi-instancing.)

BusinessWare Connector Programming Guide

Miscellaneous Development Issues

Multi-instance Connection Models

The typical connection model runs as a single instance. To improve throughput,
end-users can configure connection models to run multiple instances, provided all
flows in the model are multi-instance-enabled.

Several BusinessWare flows, such as the Multi-threaded Subscriber, Channel
Target, Simple Data Transformer, RDBMS, and HTTP flows, are multi-instance
enabled; end-users can combine these flows as needed into specific connection
models and configure the number of instances that they'd like (by changing the
concurrent instances property under Model Properties).

Not all flows can easily be multi-instanced. In addition, all flows in a connection
model must be multi-instance enabled (otherwise, the createFlowManager won't
return true and the connection model won't be multi-instanced after all). If you're
wiring together multi-instance-enabled flows into a connection model or
connection model template, be sure that all flows are multi-instanced.

REQUEST-REPLY (SYNCHRONOUS) PROCESSING

As mentioned throughout this guide, once an event exists in the context of a
specific connection model, it is “pushed” from flow to flow by an underlying
BusinessWare mechanism. The originating flow waits for the push to be returned
before it concludes its processing loop.

When a connector flow picks up data from a channel and creates an event that gets
pushed from the source flow, the communication style between channel and
source flow is asynchronous.

As an alternative, you can implement a request/reply (synchronous) using the
request/reply API. (BusinessWare HTTP connector has implemented this style.)
See the Request/Reply Sample in the connectors samples folder in BusinessWare
for additional information.

Impact on Using SimpleTranslatorinterface in a Connection Model

For example, typically when a simple translator returns an EventBody, the
EventBody is pushed (usually to the next flow for processing). If you want to
return the EventBody as a result (instead of pushing it to the next flow), you can
use the markisResponse(true) mthod, and the event will be returned to the
requestor (instead of being pushed).

99

100

Use public EventBody[] execute(EventBody e) method to use request-reply style
invocation on the flow that follows the Simple Translator. That flow will process
the event and return an array of event bodies. This method enables you to write
code in the SimpleTranslator that takes an event and performs multiple
invocations on the subsequent flow before returning a result. To specifically name
the flow on which multiple invocations should occur, use public EventBody[]
executeAt(String flowName, EventBody e€), where flowName is a valid flow in
the connection model.

See"Simple Translator Interface” on pagefér listing of all methods in this
interface.

BusinessWare Connector Programming Guide

1 1 INSTALLING CONNECTORS AND
CONNECTION MODELS

This chapter discusses several tasks associated with installing connectors and
connection model templates. This chapter includes these topics:

® Creating the Initialization (.ini) File

e |Installing a Connector

CREATING THE INITIALIZATION (.INI) FILE

Before you can install a connector, you must create an initialization file (.ini) that
loads and registers various components—connector flows, connection model
templates, and transformers, for example—into the BusinessWare repository and
makes them available through the Console. A connector’s initializatioin ()

file contains information about the connector’'s name, its rep, and default values
for its properties.

At a minimum, an initialization file (.ini) is needed to register a connector flow in
the BusinessWare repository and install a flow into the Flow Palette on the
BusinessWare Console. In addition, developers can create initialization files that:

® add connection model templates to the Console
® register transformer methods

® import and register IDL into the BusinessWare repository

You can accomplish these tasks by using the command-line tools listed in this
table:

Task Command-line Tool

Add connection model templates to the ConnUtil
Connection Model menu in the Console

Register transformer methods TransReg

Import and register IDL into the repository | importid|

See thaBusinessWare Programming Referefmeinformation about using these
tools.

101

You can write a Java program that will create the initialization file for you (as
described in'Creating an .ini File From a Java Prograimélow), or you can use
the Connector Generator tool, as described in the next sub-section.

GENERATING AN .INI FILE BY USING CONNECTOR GENERATOR

The Connector Generator Tool creates a defanilt file for a connector based

on properties in the .gen file. You can generate the .inifile using either the wizard
version of the Connector Generator or the command-line version, but to use the
command-line version, an .gen file must already exist."S8s@éng the Connector
Generator Tool and the .gen File” on pagefd2additional information about

using the command line tool.

Do not modify the .ini file after it's been generated. Add the name of the
initialization file (without the .ini) to the vtinstalled.cfg file, then run the
loaditems script (if the BusinessWare installation has already been up and
running). Seélnstalling a Connector” on page 138r additional information
about installation.

The generator tool can automatically generate the .ini file for the connector flow,
but if you want to create an .ini file that includes a connection model or a
connection model template, you must write a Java class that uses several key
BusinessWare classes and methods, as described in the next section.

CREATING AN . INI FILE FROM A JAVA PROGRAM

Developers can creatmi files by writing a Java program that generates the
file specifically for their connector. This section steps through two files from the
Simple Connector SampileSampleLib.java andSamplelni.java

When compiled and run, ttgamplelni.class generates an .ini file (shown

in the screenshot), which loads the connector, connection model templates, and
the transformer into the Flow Registry:

File Edit Seach Help

2 “witria/ConnectorDef:1.0" =
"com.witria.install. ConnectorLib” “newConnectar”
"witriasConnectorpef:2.2" “"com.vitria.install.ConnectorLib™
"newConnaector_2_2" "vitria/Connectorpef:2.2"
"com.vitria.dnstall. InstallLib” “createconnectorInstaller” type
"sampleConnector"” ImportRegistry 2
"commyCompany fyF lows /Samplesourcepef:1.0" “sampleLib”
"createsamplesourcepef”
"com/myCompany/myF 1ows /SampleTargetpef:1.0" "sampleLib”
"createsampleTargetbef” ConnectionTemplates 0 RegisterTypes 1
LS Anterdef /Sampleevents. id1” TransTlatorlibs 1
"myDataTranslator"

102 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

You can adapt these two Java files as needed for your connector and any
connection model templates and transformers.

NOTE: Use the fully-qualified package names for the connector code (rather
than the non-qualified names shown in these code listings).

Step-through of the Samplelni.java Code

The Samplelni.java code begins with these imports:

import com.vitria.install. ConnectorLib;
import com.vitria.bclient.ConnectorDef;
import com.vitria.bclient.ConnectorRep;
import com.vitria.fc.io.ExportException;
import java.io.lOException;

Next is the name of the class, followed by thain() method; themain()
method calls theewSampleConnector method, which provides the code for
the bulk of the work of initializing (loading and registering) the connector
components.

public class Samplelni é)])
public_static void maln(f tring[] args) throws ExgortExceptlon, IOException o
ConnectorDef cDef=newSampleConnector("SampleConnector“SampleConnector.ini™);
ConnectorLib.exportltem(cDef, “SampleConnector.ini”);
System.out.printin(“Generated ConnectorDef for Sample”);

public static ConnectorDef newSampleConnector(String type) {
ConnectorRep rep = new ConnectorRep();
rep.init();
rep.setClassName(ConnectorLib.className);
rep.setMethodName(ConnectorLib.methodName);
rep.setConnectorType(type);

As shown above, theewSampleConnector method starts by setting the class
name, method, and type for the connector. The next few sub-sections focus on the
other tasks that theewSampleConnector method accomplishes.

Adding the Flow Type to the Import and Export Registry

These next two statements add export tags for the two new connectors to the Flow
Registry:

/I add the flow t¥pes to the import registrE
rep.addFlow ype(Samglele.SQUR E_EXPORT_TAG,
“SampleLib”,
“createSampleSourceDef");
rep.addFIowType(Samglele.TA GET_EXPORT_TAG,
“SampleLib”,

103

“createSampleTargetDef");

Adding Connection Model Templates

These next two statements make the two connection model templates available on
the Connection Models menu of the Console:

rep.addConnectionTempIateItem(“Sarpgle to Channel”,

ampleLib”,
“createSampleSourceToChannel”);

rep.addConnectionTemplateltem(“Channel To Sample”,

“SampleLib”,
“createChannelToSampleTarget”);

104

(Note that you'll still need to wire together the connection model itself. That's
done in theSampleLib.java file, as described ifiStep-through of the
SampleLib.java Code” on page 195.

Adding a Transformer Class

This statement adds a new transformer class to the registry:
rep.addTranslatorLib(“MyDataTranslator");

All the methods in MyDataTranslator will be available from the connection
model.

Registering IDL Files

The next statement registers the IDL in the repository, creating editable metadata.

Il register the IDL_in the r.epositorg)
rep.addTypeToRegister(“../../interdef/SampleEvents.idl");
return rep;

The interface definition language file that this section of code refers to must be
located in thenterdef directory in the BusinessWare installation.

This concludes the code for tilewSampleConnector method in the
Samplelni.java file. The remainder of the code in this chapter is from
SampleLib.java of the Simple Connector Sampline code in SampleLib
will be used to embed the necessary information in the .ini file to create the
connection model (“Channel to Sample”) template with the associated event
logger and transformer class.

BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

Step-through of the SampleLib.java Code

The SampleLib.java file starts with the list of imports for the API classes
and declares the classname:

import com.vitria.bclient.BClientLib;

import com.vitria.bclient.FlowManagerDef;

import com.vitria.fc.io.ImportStream:;

import com.vitria.jct. EventLoggerDef;

import com.vitria.bfolder.ContextFolder;

import com.vitria.jct.JctLib;

import com.vitria.jct.SubscriberDef;

import com.vitria.jct.PublisherDef;)

import com.vitria.connectors.common.ConnUtil;

import com.vitria.connectors.common.ConnectorLib;)

import com.vitria.connectors.datalators.simpletranslator.SimpleTranslatorDef;
import com.vitria.connectors.datalators.simpletranslator.SimpleTranslatorLib;
public class SampleLib {

Defining Export Tags for Connectors

The .ini must create definitions for the export tag for the connector, to uniquely
identify it in the Flow Registry. This code listing handles the export tags for the
source and target connector for the Simple Connector; it also provides reference
to the create methods that will provide a new Rep in the Console, when an end-
user begins creating a connection model:

public static final String SOURCE_EXPORT_TAG =
“com/myCompany/myFlows/SampleSourceDef:1.0”;
public static final String TARGET_EXPORT_TAG =

public static Samp

“com/my_Companme lows/SampleTargetDef:1.0";
eSourceDef createSampleSourceDef(ImportStream s) {
return createSampleSourceDef();

public static SampleSourceDef createSam IeSourceDefS) {

SampleSourceRep ssd = new SampleSourceRep();
ssd.init();
return ssd;

public static SampleTargetDef createSampleTargetDef(ImportStream s) {

return createSampleTargetDef();

public static SampleTargetDef createSampleTargetDef() {

SampleTargetRep std = new SampleTargetRep();
std.init();
return std;

You can use the ending characters of the export tags (the “1.0” in
...SampleSourceDef:1.0 above) to differentiate versions of the connector.
The duplication of thereateSampleTargetDef method is for compatibility
with previous versions of BusinessWare.

105

The next few code excerpts are highlights from the
createConnectorSubscriberDef method in SampleLib.java. This method creates
the connection model for a channel source to the Sample flow.

(SampleLib.java also contains a method () for the “Sample flow to the channel”
connection model, not shown in the listings in this section;Segle Connector
Samplefor complete information).

In simple terms, the method has several tasks, including creating the target flow

def, the transformer, the event logger flow, and wiring all these elements together.
The first line is the method signature; the second line creates the channel source
def, which will be the source of events for the connection model template that the

.ini file will ultimately load into the BusinessWare Console:

gublic static FlowManagerDef .createChannelToSamPIeModel(){
ubscriberDef channel = JctLib.createSubscriberDef();

Creating and Adding Transformer Classes and Methods

If you want the connection model to include transformation methods, you can
have the .ini file add the Simple Data Transformer flow and set the initial values
for the class name and method. This section o8hmpleLib.java code adds

a transformer flow to the target list of the flows from which it is to receive events,
and adds to the transformer's target list the flows to which it will send events:

/l === create translation flow === _))
SimpleTranslatorDef transformer = SimpleTranslatorLib.createSimpleTranslatorDef();
/I initial transformer configuration
transformer.setClassName(“MyDataTransformer”);
transformer.setMethodName(“dateTolDLString");

In the code above, createSimpleTranslatorDef() creates the standard Simple
Transformer flow; transformer.setClassName() sets the name of the class that
contains the transformer method; and transformer.setMethodName() sets the
name of the transformer method to be used. The class name and method name will
be the default values, which can be changed by the user of the connector in the
Console.

NOTE: Use the fully-qualified package names for the connector code (rather
than the non-qualified names shown in these code listings). For example, if you
have amySpecial connector with a stringToSpecial transformer() method in a
class named MySpecialTransformer, all of which are members of a package
namedmyspecial , the last two lines in the listing above would appear as
follows:

transformer.setClassName(“myspecial.MySpecialTransformer”);
transformer.setMethodName(“stringToSpecial’);

106 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models
For information about creating your own custom transformer methods, see
“Customizing Methods” on page 93

Creating and Initializing the Def

The following code creates and initializes the sample target connector def:

SampleTargetDef std = createSampleTargetDef();

The following code wires all three defs together:

FlowManagerDef flowManager = BClientLib.createFlowManagerDef();
channel.getTargetList().append(translator);
translator.getTargetList().ap end(st(i?;
flowManager.getSourcelList().append(channel);

Natice in the previous line that the flowManager maintains a list of source flows,
so that this connection model can have many source flows.

Creating the StopOn Flow

The code below creates and initializes the StopOn flow for the error model, and
connects it to the Logger. To create the StopOn flow, add these lines to the Java
file generating the connection modelisi file:

Adding the StopOn Flow to the Logger Target List

The code below creates and initializes a StopOn flow for the error model and
connects it to the Logger:

SimpleTranslatorDef logTranslator =
SimpleTranslatorLib.createStopOnTranslatorDef();
logTranslator.setName("StopOn_Sample");

Next, thecreateChannelToSampleModel concludes by returning a Flow
Manager object, the creation of which was the primary goal of this method:

return flowManager;

Finally, this next method calls theateChannelToSampleModel method
above to create a flow manager:

public static void createChannelToSampleTarget(ContextFolder folder)
throws com.vitria.fc.folder.UnresolvedException,
com.vitria.fc.folder.NoPermissionException,

107

com.vitria.fc.io.ExportException,
com.vitria.fc.folder.OperationException

{
FlowManagerDef flowManager = createChannelToSampleModel();
/l === bind the new ﬂowmana?er into the name space ===
) ConnUtil.newConnectionModel(folder, flowManager, “New Channel To Sample”);

Ultimately, when a business user selects the “New Channel To Sample”
connection model from the menu on the Console, the createChannelToSample
model is called, the flow manager creates the defs, reps, and instantiates the flow
and wires it all together according to the specifications in the .ini file, and the
template displays in the Connection Model on the Console.

INSTALLING A CONNECTOR

BusinessWare components, including connectors, can be installed on a single
machine or across multiple machines, in client/server (distributed) fashion.
Specifically, you can install and use the Console on one machine and have
BusinessWare installed and running on a server located elsewhere, over a
network.

In either case, the .class files that comprise the connector must be installed on the
client machine where the Console is running. The next two sections discuss the
files and how to install them in either a client/server or stand-alone server
configuration.

CONNECTOR FILES

As discussed throughout this guide, particularlCimapter 4, “Creating Java
Components for a Connector Flova tonnector flow is comprised of several Java
.class files that enable business analysts or other end-users to manipulate and
configure it (as a flow) in the context of a connection model in the Console. These
include specifically .class files for the def, the rep, the BeanInfo, and the flow.

108 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

The connector flow also includes code for the transaction resource, if the
transaction service will manage transactions for this flow. This summary table
shows the naming standard, in whichmeis the connector name and type is the
typeof flow (source, target, or source-target) as well as the specific classnames
that comprise th&Bank Connector Samptarget flow:

Naming Standard EBank Java Target Flow
Def nameTypBef EBankJavaTargetDef.class
Rep nameTypRep EBankJavaTargetRep.class
BeanlInfo nameTypRepBeaninfo EBankJavaTargetRepBeaninfo.class
Flow nameTypElow EBankJavaTarget.class
[BaseFlow] nameTypElowBase na [EBankJavaTargetBase.class]
Transaction Resource nameTypResource EBankJavaTargetResource.class

Note that when the Connector Generator Tool is used to generate files, the flow is
implemented as two files, a base and a flow file.

All these .class files for the connector must be inGheASSPATHon the machine
where BusinessWare server is installed; if you've implemented a client/server
environment, you must also install these in the classpath on the client machine,
where the Console is installed and running.

In addition, the files for any custom transformer classes implemented in your
connection model must also be in I8&ASSPATH

® On Windows NT, C++ connectors also have Céif files that must be in
the PATH.

® On UNIX systems, C++ connectors also have C++ shared libragy) files
which must be in the shared library path.

You can install the files for a connector flow by following the steps in the next
section. In addition to the .class files, you'll need an initialization (.ini) script, as
discussed ifiCreating an .ini File From a Java Prograrng’load and register the
metadata and other objects in the BusinessWare repository.

Installing a Connector

All .class files for the connector must be located in the appropriate sub-directories
on both the client machine and server (for a client/server (distributed)
BusinessWare installation), or just on the server machine (for a stand-alone
BusinessWare installation). The sub-directory will be specfic to win32 or UNIX,
depending upon the platform on which BusinessWare is installed.

109

110

Developers should create an InstallShield (for Windows platform) or
InstallAnywhere (for Unix) application to handle these installation tasks for their
connector users.

In the steps below, replaggatformwith win32 or UNIX as necessary for your
install. To install a connector:

1.

Copy all connector .class files—the def, rep, Beanlnfo, and the flow—to
%VITRIA%\java\ platform , whereplatformis eitherwin32 or UNIX.
This places them in thELASSPATH

m ForaC++-based flow, also copy tidil (or on UNIX, the shared library
(.s0) file) for the connector to %VITRIA%bin\ platform;this places
these files into the PATH (or shared library path).

Copy the connector’mi file to %VITRIA%\data\install

Add the name of theani file (without the.ini extension) to the end of the
file vtinstalled.cfg . The default location oftinstalled.cfg is
%VITRIA%\data\install.

Run theloaditems script (also located by default in
%VITRIA%\data\install . When you execute the script, the
BusinessWare server must be running. Tdalitems script reads the
vtinstalled.cfg file and loads the matching .ini file. If the .ini file is
found, and it is dated later than the last time loaditems was run, the objects
created by the .ini are loaded into BusinessWare.

Open the Console and verify that the connector is displayed in the Flow
palette; if the connector doesn’t display in the Flow Palette:

m Re-start the Console to force the JVM (Java virtual machine) to reload all
byte code that comprise the Console).

m Double-check the classpath and make sure that all .class files are in the
right sub-directory under the %VITRIA% installation.

Test the connector by either creating a new connection model or importing an
existing model, and then using the connector in the model. This typically
requires configuring the connector flow, saving and registering the
configuration, starting the connection model and testing the results.

If you're running the Console on a client machine rather than on the BusinessWare
server, simply copy the connector’s class files to a directory ilGh&aSSPATH

on the machine on which the Console is running. By default, the classpath is
%VITRIA\java\ platform whereplatformis eitherwin32 or UNIX.

BusinessWare Connector Programming Guide

REFERENCE

The classes and interfaces you'll use to develop Connectors for BusinessWare
belong to just a handful of Java packages and C++ include files. You'll find the
C++ files in the \include sub-directory of the BusinessWare installation.

For Java development, you should have BusinessWare installed on your
development machine and make sure that CLASSPATH is set according to the
installation instructions. Vitria recommends using Sun’s Java JDK (Java
Development Kit) compiler, release 1.2.2. The command line compiler requires
fewer resources than many of the IDEs on the market. In addition, Vitria doesn’t
provide the source code for the Java API, and some IDEs require that you have
source code in order to write new applications.

Java APl Summary

SeeBusinessWare Programming Referefmeadditional information.

Table A-1 com.vitria.connectors.BaseConnector

Method Description

init() Initializes state. This method must be called before
the flow is started.

public Returns the def associated with this flow
ConnectorBaseDef
getDef(){return def_;}
public void Called by the FlowManager when the connection
startEvents() model is started. Flows that perform startup work

must override this method and call
super.startEvents() after they have finished their
startup work and before returning.

public void stopEvents(){ Called by the FlowManager when the connection
modelis stopped. Flows that perform shutdown work
must override this method and call
super.stopEvents() before doing shutdown work and
before returning.

Table A-2 com.vitria.fc.flow.FlowEnv

Method Function
int getinstanceCount() Returns the total number of instances inside this
connection model (multi-instance support).
int getinstancelndex() Returns the instance index that this flow env is
running inside the connection model (multi-instance
support).

These are the methods that you must implement in the Rep to communicate with
the repository.

Table A-3 com.vitria.fc.io.Exportable

void exportTo(com.vitria.fc.io.ExportStream Export the object to the given
stream) throws com.vitria.fc.io.ExportException | stream.

void importFrom(com.vitria.fc.io.ImportStream | Import the object from the
stream) throws com.vitria.fc.io.ImportException | given stream.

getExportFormat() Returnthe tag that defines the
format of the object in the
stream

Table A-4 com.vitria.fc.trans.OnePhaseResource

Method Function
prepareToCommit() Returns the ID of the active transaction (one-
phase transaction resources only)
commitResource() Commits the transaction
abortResource() Kills the transaction
getPrepareStatus() Returns a flag showing whether the active

transaction has been committed yet (one-phase
transaction resources only)

Table A-5 com.vitria.fc.trans.Resource

Method Function

precommitResource() Prepares the system for a commit (two-phase
transaction resources only)

BusinessWare Connector Programming Guide

Reference

Method Function
commitResource() Commits the transaction
abortResource() Kills the transaction

Request/Response API

Includes the ResponseListener interface (public extends Subscriber) and the
ResponseListenerLib class. A ResponseListener is an object that can be sentas a
parameter of a request event, and then used to wait for a response event.
ResponseListener objects are not persistent. Events sent to a ResponseListener
that no longer exists will be lost. See Request/Reply Sample for information about
how to use.

Table A-6 com.vitria.connectors.request.ResponseListener

public EventBody Parameter timeout is the maximum number of
awaitResponse(long milliseconds to wait for a response. Returns the
timeout) response event (if it was received), or null if the

timeout period expired.

public void cancel(); Stops listening for response events because the
request event is cancelled.

Table A-7 com.vitria.connectors.request.ResponseListenerLib

Method Description
public static Create a ResponseListener; the default logger will be
ResponseListener used for diagnostic messages.
createResponseListener()
public static Create a ResponseListener. The log will be used for
ResponseListener diagnostic messages.

createResponseListener(D
iagLogger log)

public static Create a ResponseListener. The log and log level will
ResponseListener be used for diagnostic messages.
createResponseListener(D
iagLogger log, int
logLevel)

A-4

Method

Description

public static
ResponseListener
createResponseListener(D
iagLogger log, int
logLevel)

Create a ResponseListener. The log and log level will
be used for diagnostic messages.

public static void
respond(Subscriber
subscriber, EventBody
response, DiagLogger log)

Send the response event to the ResponseListener
The subscriber is the ResponseListener that was sent
in the request event.

After creating a ResponseListener, always call either awaitResponse() or cancel()

on the ResponseListener.

Parameters:

® log The logger to use for logging messages. If null, the default logger will be

used.

® logLevel The log level to use for logging messages.

BusinessWare Connector Programming Guide

Reference

C++ APl Summary

Table 0-1 FlowBridge (fbutil.hxx)

void flowbridge_commit(vtFlow::Flow* flow);

Deprecated; C++ flows should not call commit. (This
method calls commit on the connection model. If commit
after is set, the JavaFlow will call commit automatically.)

void flowbridge_abort(vtFlow::Flow* flow);

Abort the transaction on the entire connection model. Not
this only set a flag that abort should occur. When flow
returns * to the Java processing environment, an abort wi
be issued to the transaction service.

void flowbridge_logmessage(viCORBA::LongiLevel,
vtFlow::Flow* flow,char* component, char*
message);

Log a string message to the loggesse this during
development process onlyThis method is kept for
compatibility--all new code should use diagnostic variant tg
log internationalized message. iLevel specifies a log level
that is checked before logging actually occurs.

void flowbridge_logevent(vtCORBA::Long major,
VtCORBA::Long minor, char* message,
vtFlow::Flow* flow);

Log a string message with major and minor code to the
logger. * Note this method is kept for compatibility, use the|
internalized version instead.

void flowbridge_logmessage(vtCORBA::LongilLevel,
vtFlow::Flow* flow, VTDiagnostic* diagMsg);

Log an internationalized diagnostic message to the loggery.

D

void flowbridge_logerror(vtCORBA::Long iLevel,
vtFlow::Flow* flow, VTDiagError* diagError);

Log an internationalized diagnostic message to the logger.

iLevel specifies a log level that is checked before logging
actually occurs.

void flowbridge_logeventbody(viCORBA::Long
major, viCORBA::Long minor, char* message,
vtFlow::EventBody* e, vtFlow::Flow* flow);

Log an message with an eventbody to the event logger.
major major code minor minor code message string
message describing event e the original event body that
error occured on

void flowbridge_stopAllFlows(vtFlow::Flow* flow,
char* message);

Stop all the flows in the connection model. Note this is not

synchronous call, a thread is spawned which will issue the

stop call. flow the C++ flow param message a string
message describing why the flow is stopping.

D

Simple Translator Interface

Use methods from th8impleTranslatorinterface

to get information

about the environment through tRébowEnv , and to log error and trace
messages. The complete SimpleTranslatorinterface is as follows:

package com.vitria.connectors.datalators.simpletranslator;

import com.vitria.fc.diag.DiagLogger;
import com.vitria.fc.flow.FlowEnv;

import com.vitria.fc.flow.EventBody;

public interface SimpleTranslatorinterface {
public DiagLogger getLogger();
public FlowEnv getFlowEnv();
public void log(String message, int level);
public void log(String message);
public void logException(Exception e, int level);
public void logException(Exception e);
public int getLogLevel();
public void sendToTarget(EventBody ewt);
public void marklsResponse(boolean b);
public EventBody[] execute(EventBody e);
public EventBody[] executeAt(String flowName, EventBody

e);
}

Here’s an example of using the SimpleTranslatorinterface to to obtain information
from the FlowEnv and to log messages:

public static EventBody RDBToString(EventBody evtin, String[] separator,
SimpleTranslatorinterface sti)

/I just send epoch events on (falthou%h this use of indexOf is not complete)
if { evtin.getEventSpec().indexOf("epoch") >
L retlljrn evtin; L 0
ogger logger = sti.getLogger();
EventDef evtDef = evtln.getEventDef();
List paramDefs = evtDef.getParameterList();
Object[] inParams = evtln.getParameters();
String outstring = new Stn_n%();)
for (inti = 0; i < inParams.length; i++) {)
int kind = ((ParameterDe paramDefs.eIementAtB.getType().klnd();
outstring = outstring + inParams[i] + separator[0];
if (logger.getTraceLevel() >= diagLogger.VERBOSE)) .
Iogge[.trace%d|agLogger.V RBOSE,"Para m"+i+" ="+ inParams[i] + "
type = " + kind);

ventDef e =
(EventDef)(BasicEventsHelper.getMetaObject().findDef("stringEvent"));

Object objs[] = new Object[1];

objs[0] = “outstring;))

EventBody ebOut = JctlLib.createEventBody(e, objs);

return ebOut;

A-6 BusinessWare Connector Programming Guide

GLOSSARY

Channel A structure in BusinessWare that holds events.
Channel source Aflow that receives events from a channel.
Channel target: A flow that sends events to a channel.

Connection model A collection of flows and support programs that send data
between end points (which may be channels or external systems).

Connector. A flow that connects an external system with BusinessWare, either
converting external system data to BusinessWare events or vice versa. (Note that
not only are connector flows usually referred to simply as “connectors,” but also
that what is referred to as a “connector” sometimes comprises a suite of connector
flows, transformers, channel and source target flows, and templates. For instance,
the “File Connector” includes not just the File Source and File Target connector
flows, but also several pre-wired templates.)

Container server. The underlying software infrastructure required to instantiate
an object.

Event: A generic data-exchange format that contains a block of bytes that have
meaning within the context of a specific BusinessWare implementation. A Vitria-
specific keyword added to CORBA IDL as implemented in BusinessWare.

External system- the data repository (such as a database management system,
file system, or message queue) that your connector extracts data from or inserts
data into.

Flow: A component that can receive events, do processing, and send events to
other flows. Flows can be linked or “wired” together to construct a connection
model that defines a runtime process that interacts with an external system.

Interface: In the context of CORBA, an interface is an object that describes the
set of services (operations) that a CORBA server offers to a client. A CORBA
interface is defined using the OMG (Object Management Group) IDL (interface
definition language). Similarly, in Java an interface is a list of the methods that
can be used by a client application.

Module: A structure that defines a namespace for a set of interfaces.

G-1

Glossary

G-2

Source connector:A connector that creates events from data from an external
system.

Source-target flow: A flow that both sends and receives events; typically referred

to as a transformer because a source-target flow usually translates (tranforms) an
event of one type into an event of another type (on the output side of the flow).
The RDBMS Connector is the only source-target flow that is not considered a
transformer.

Target connector: A connector that receives events and interacts with an external
system.

Transaction: A logical unit of work that has ACID (atomicity, consistency,
integrity, durability) properties after being processed. In simple terms, a group of
events that must not be divided: that the events need to either be all delivered or
none of them be delivered.

Transaction resource Acomponent of each flow in a connection model that
handles the code related to transactions in the external system, including
committing or aborting the transaction.

Transaction service:A component of BusinessWare that ensures that all the
events that participate in a particular transaction pass through the connection
model safely if the transaction is committed, pass through the connection model
without being committed, or do not pass through the connection model if the
transaction is aborted.

Transformer: A source-target flow whose output event is different than the input
eventitreceives. (Inthe API, the term “translator” is used; this guide uses the term
translator only when explicitly referring to the API.)

BusinessWare Connector Programming Guide

A
abortResource 87, 88, A-2

B
BeanlInfo 15, 39

C

C++ connector 40, 55

C++ wrapper 55

channel source 1

channel target 1

ChannelFlow 2
com.vitria.connectors.common 26, 27
com.vitria.connectors.generator.ConnectorWizard 38
com.vitria.fc.io.Exportable 29
commit 54, 78

commit after 78

commitResource 87, 88, A-2
connection model 2, 1

connector 1,2,9,1

connector generator 37
CONNECTORCOMMITS table 83
ConnectorSourceDef 26
ConnectorSourceRep 27
ConnectorSourceTargetDef 26
ConnectorSourceTargetRep 28
ConnectorTargetDef 26
ConnectorTargetRep 28
ConnUtil 101

container server 1

CORBA 65,71

createEventBody 73

createFlow 32

createFlowSource 32
createFlowTarget 32

D

def 15

development strategies 80
display name 39

doPush 13

E

event 1
EventBody 73
EventDef 73
events 1
export tag 105

INDEX

Exportable 29
external system 17, 2
external system APl 17

F

File Source 4

File Target 4

flow 2,9

flow file 15, 45
FlowDef 32
FlowEnv 33
FlowSourceDef 32
FlowTargetDef 32

G

getPrepareStatus 87, A-2
getSourceEventinterfaceList 31, 97
getTargetEventinterfaceList 31, 97

H
help text 39

|

importldl 69, 101

init 87

interdef directory 104
interface 1

L

loaditems 110
log level 89

M

metadata 65, 73
module 1
Multi-threaded subscriber 2

O

one and two-phase commit 76

one and two-phase transaction resources 77
one-phase transaction resources 80

ORB 66

P
package 39

Index-1

Index

Persistence 8
precommitResource 88, A-2
prepareToCommit 87, A-2

R

RDBMS source connector 83
RDBMS target connector 4
rep 15,27

resolver 32

S

SAP 70
setClassName 106
setMethodName 106

Simple Data Transformer 4, 106

SimpleTranslatorinterface A-5
source connector 1, 2

source list 31, 97
source-target connector 1
source-target flow 2
Spreadsheet Transformer 4
startEvents 16

stopEvents 16

StopOn 107

T

target connector 1, 2
target list 31, 97
transaction 2
transaction resource 12, 76, 2
transaction service 76, 2
transformer 2
transformers 1
translator 2

TransReg 96

transReg 101
tryDispatch 51

\Y,

Vantive source connector 19
vtinstalled.cfg 110

Index-2

BusinessWare Connector Programming Guide

	Table of Contents
	Preface
	Audience
	Related Reading
	BusinessWare Documentation Set
	How This Guide Is Organized
	Conventions
	Contacting Vitria
	Headquarters
	Technical Support
	Documentation

	Introduction to Connectors
	BusinessWare Connectors
	Connectors as a Type of Flow
	Connection Models
	Connectors Bundled with BusinessWare
	Packaged Connectors
	Custom Connectors

	Next Steps

	Architecture Overview
	BusinessWare Basics
	Metadata Repository
	The EMT (Error/Messaging/Tracing) Framework

	Supporting Infrastructure
	Error Model (Error Graph)
	Transaction Architecture
	Flow Management

	Development Architecture

	Design and Development Guidelines
	Design Considerations
	Connector Design Guidelines
	Naming standards and UI Conventions
	Event Names
	File Names
	Module Names

	Getting Started
	Development Platform Setup
	Checklist For Developing a Connector

	Creating Java Components for a Connector Flow
	Creating the Java components for the Flow
	Step 1: Write the Flow Def
	Step 2: Write the Flow Rep
	Extend the Appropriate Connector Class
	Implement the get and set Methods
	Enable Properties to be Stored in the Repository
	Provide Lists of Event Interfaces
	Instantiate the Flow
	Multi-instance Flows
	Load the Locale Bundle for the EMT Framework

	Step 3: Write the BeanInfo
	Java File Summary

	Simplified Development using the Connector Generator
	How to Use the Connector Generator Tool (Wizard)
	Using the Connector Generator Tool and the .gen File

	Writing Java Connectors
	Introduction to Java Connector Flows
	Writing Code for a Java Connector
	Initialize the Connector Flow
	Start and Stop Processing in the Flow
	Code that Sends and Receives Events
	Event Handling (Target or Source-Target Flow Only)
	Event Handling (Source or Source-Target Flow)

	Checking value of commitAfter_

	Writing C++ Connectors
	Introduction to C++ Connector Flows and Flowbridge
	How the C++ Wrapper Works

	Implementing a Flow in C++
	Create the Java Components
	Call the Wrapper in the Java Code for the Rep
	Write a C++ Function that Gets called by the Wrapper
	Write the Code for the C++ Flow
	Code that Sends and Receives Events

	Defining Event Interfaces
	Overview of Events and Metadata
	Overview of IDL and ODL
	Creating Definition Files that Describe Metadata
	Naming Conventions and Guidelines

	Creating Stub Files
	Registering and Using Metadata
	Providing an IDL (or ODL) Generator with Custom Connectors
	Creating a User Interface Tool for the IDL/ODL Generator
	Mapping External Datatypes to IDL (or ODL)
	Extracting Metadata From the External System
	Creating Metadata for BusinessWare
	Implementing the Generator

	Programming Techniques for Working with Events

	Writing a Transaction Resource
	Overview of Transactions
	The Transaction Service
	The Transaction Resource
	One-phase and Two-Phase Commit Protocols

	How the Transaction Service Processes Transactions
	How the Transaction Service Handles Failures

	Robust One-Phase Transaction Resources
	One-Phase Resources that Implement Status Information
	No Transaction ID API in External System

	One-Phase Transaction Resources without Status Information
	Transaction Service and getPrepareStatus()

	Writing a Transaction Resource for a Flow
	Write the Transaction Resource
	Import Transaction APIs
	Connect to the External System

	Initializing the Transaction Resource in the Flow

	Methods Available to Transaction Resources

	Handling Errors
	Sending Error Messages to the Log File
	Log Levels
	logger_

	Using the EMT Framework for Log Messages

	Miscellaneous Development Issues
	Customizing Methods
	Writing the Method in the Java Code Editor
	Writing the Code Manually
	Customizing Methods for the Simple Transformer
	Writing the Custom Class
	Registering Custom Methods
	Displaying Event Lists

	Customizing Simple Router Methods
	Customizing NestedRouter
	Multi-threaded Subscriber
	Multi-instance Connection Models

	Request-reply (Synchronous) Processing
	Impact on Using SimpleTranslatorInterface in a Connection Model

	Installing Connectors and Connection Models
	Creating the Initialization (.ini) File
	Generating an .ini File By Using Connector Generator
	Creating an .ini File From a Java Program
	Step-through of the SampleIni.java Code
	Step-through of the SampleLib.java Code

	Installing a Connector
	Connector Files
	Installing a Connector

	Reference
	Java API Summary
	Request/Response API

	C++ API Summary
	Simple Translator Interface

	Index

