
BusinessWare®

Connector Programming
Guide

BusinessWare Connector SDK Version 1.0

Last updated November 29, 2000
V I T R I A
TECHNOLOGY, INC.

f

nse
The
© 1997–2000
Vitria Technology Inc
945 Stewart Drive
Sunnyvale, CA 94086-3912
Phone: (408) 212-2700
Fax: (408) 212-2720

All Rights Reserved.

Vitria, BusinessWare, and Business-in-Realtime are registered trademarks o
Vitria Technology, Inc. eBusinessWare and eBusiness-in-Realtime are
trademarks of Vitria Technology, Inc. All other brand or product names are
trademarks or registered trademarks of their respective companies or
organizations.

This manual, as well as the software documented in it, is furnished under lice
and may only be used or copied in accordance with the terms of such license.
information in this manual is subject to change without notice.

http://www.vitria.com

TABLE OF CONTENTS
Preface . v
Audience. v
Related Reading. v
BusinessWare Documentation Set. vi
How This Guide Is Organized. vii
Conventions .viii
Contacting Vitria . ix

Headquarters . ix
Technical Support . ix
Documentation . ix

Chapter 1 Introduction to Connectors . 1

BusinessWare Connectors .1
Connectors as a Type of Flow .2
Connection Models .2
Connectors Bundled with BusinessWare .3
Packaged Connectors .4
Custom Connectors .5

Next Steps .5

Chapter 2 Architecture Overview. .7

BusinessWare Basics. .7
Metadata Repository .8
The EMT (Error/Messaging/Tracing) Framework.8

Supporting Infrastructure .9
Error Model (Error Graph) .10
Transaction Architecture .11
Flow Management .13

Development Architecture .15
i

Table of Contents
Chapter 3 Design and Development Guidelines17

Design Considerations . 17
Connector Design Guidelines. 19
Naming standards and UI Conventions . 20

Getting Started . 21
Checklist For Developing a Connector . 22

Chapter 4 Creating Java Components for a Connector Flow25

Creating the Java components for the Flow . 25
Step 1: Write the Flow Def . 26
Step 2: Write the Flow Rep. 27
Step 3: Write the BeanInfo . 35
Java File Summary. 37

Simplified Development using the Connector Generator 37
How to Use the Connector Generator Tool (Wizard) 38

Chapter 5 Writing Java Connectors .45

Introduction to Java Connector Flows. 45
Writing Code for a Java Connector . 46

Initialize the Connector Flow . 47
Start and Stop Processing in the Flow . 48
Code that Sends and Receives Events . 50
Checking value of commitAfter_ . 54

Chapter 6 Writing C++ Connectors .55

Introduction to C++ Connector Flows and Flowbridge 55
How the C++ Wrapper Works. 56

Implementing a Flow in C++ . 56
Create the Java Components . 57
Call the Wrapper in the Java Code for the Rep 58
Write a C++ Function that Gets called by the Wrapper 58
Write the Code for the C++ Flow . 60

Chapter 7 Defining Event Interfaces .65

Overview of Events and Metadata . 65
ii BusinessWare Connector Programming Guide

Table of Contents
Overview of IDL and ODL. .66
Creating Definition Files that Describe Metadata.66
Creating Stub Files. .69
Registering and Using Metadata .69
Providing an IDL (or ODL) Generator with Custom Connectors . . .70

Programming Techniques for Working with Events71

Chapter 8 Writing a Transaction Resource. 75

Overview of Transactions .75
The Transaction Service .76
The Transaction Resource. .76
One-phase and Two-Phase Commit Protocols76

How the Transaction Service Processes Transactions77
How the Transaction Service Handles Failures79

Robust One-Phase Transaction Resources .80
One-Phase Resources that Implement Status Information80
One-Phase Transaction Resources without Status Information . . .83

Writing a Transaction Resource for a Flow .85
Write the Transaction Resource. .85
Initializing the Transaction Resource in the Flow.87

Methods Available to Transaction Resources .87

Chapter 9 Handling Errors . 89

Sending Error Messages to the Log File .89
Log Levels .89
logger_ .90

Using the EMT Framework for Log Messages .92

Chapter 10 Miscellaneous Development Issues 93

Customizing Methods .93
Writing the Method in the Java Code Editor.93
Writing the Code Manually .94
Customizing Methods for the Simple Transformer.94
Customizing Simple Router Methods. .97
Customizing NestedRouter .98
Multi-threaded Subscriber .98

Request-reply (Synchronous) Processing .99
iii

Table of Contents
Chapter 11 Installing Connectors and Connection Models101

Creating the Initialization (.ini) File . 101
Generating an .ini File By Using Connector Generator 102
Creating an .ini File From a Java Program. 102

Installing a Connector . 108
Connector Files . 108

Appendix A Reference . A-1
Java API Summary .A-1

Request/Response API .A-3
C++ API Summary .A-5
Simple Translator Interface .A-5

Glossary . G-1

Index . Index-1
iv BusinessWare Connector Programming Guide

PREFACE
o be
ing

es

ers.

to

s

Welcome to theBusinessWare Connector Programming Guide. This guide
describes how to design and implement BusinessWare connectors.

This preface contains the following information:

� Audience

� Related Reading

� BusinessWare Documentation Set

� How This Guide Is Organized

� Conventions

� Contacting Vitria

Audience

This book is intended for Java and C++ programmers who will be writing
software components, called connector flows, that enable external systems t
integrated with BusinessWare solutions. Before reading this book or attempt
to create a custom connector or custom transformer, be sure to explore the
connector flows, transformers, templates, and other facilities that Vitria provid
with the core BusinessWare solution to determine if a connector flow already
exists that may solve the connectivity problem at hand. See theBusinessWare
Connection Modeling Guidefor information about using the BusinessWare
Console to create new connection models from connector flows and transform

Related Reading

For related information on topics in this manual, you may find it useful to refer
the following manuals:

� BusinessWare Programming Guide. Provides information about the
BusinessWare application programming interface and discusses the task
required to create Vitria BusinessWare solutions; includes Java and C++
example code.
v

Preface

nd-

e

e
r
g.
� BusinessWare Programming Reference. An online, hyperlinked reference to
public BusinessWare Java, C++, and IDL APIs, as well as various comma
line programming tools.

� Simple Connector Sample. A tutorial that shows you how to write flow source
and a flow target connector. It explains coding the different pieces of a
connector, putting them together, and installing them in the BusinessWar
Console.

� EBank Connector Sample. An advanced tutorial that shows you how to mak
a connector transactional and robust. This sample includes a client/serve
banking application; writing a transaction resource; and exception handlin

BusinessWare Documentation Set

The BusinessWare documentation set consists of the following manuals:

Table 1 BusinessWare documentation

Manual Description

BusinessWare
Foundations

Explains the concepts underlying the product and
discusses the tools and features used across the
product: BusinessWare Console, XML, access and
revision control, and channels.

If you are new to BusinessWare, you should read this
manual first.

BusinessWare System
Administration Guide

Discusses administering the BusinessWare and
Communicator servers, including server
configuration, start-up and shutdown, managing
system files, security, federation, and so on.

BusinessWare Process
Modeling Guide

Describes how to model and automate business
processes using BusinessWare Automator.

BusinessWare Process
Management Guide

Describes how to configure audit logging and
persistence to a database. This guide provides
detailed information on audit database tables,
including schema and audit event source.

BusinessWare Task List:
Supervisor’s Guide

Describes how process and activity supervisors
manage performer tasks that have exceeded their
completion deadlines. Topics include reassigning,
releasing, and starting tasks, and terminating
processes.

BusinessWare Task List:
Performer’s Guide

Describes how to use the BusinessWare Task List.
Topics include logging on, viewing your Task List,
starting tasks, reassigning tasks, releasing tasks,
completing tasks, and logging off.
vi BusinessWare Connector Programming Guide

Preface
How This Guide Is Organized

This book contains 11 chapters and an appendix, as described in Table 2.

BusinessWare Connection
Modeling Guide

Describes how to build connection models using
BusinessWare Connection Modeler.

BusinessWare Metadata
Guide

Describes the role metadata plays in BusinessWare.
Includes topics such as how to create metadata,
manipulate events using metadata, and translate
XML into metadata.

BusinessWare
Programming Guide

Introduces the BusinessWare application
programming interface, discusses the tasks required
to create Vitria BusinessWare solutions, and
provides examples of C++ and Java code.

BusinessWare
Programming Reference

Documents BusinessWare’s Java and C++ public
APIs, as well as various command-line programming
tools.

Migration: BusinessWare
2.2.1 to BusinessWare 3.1

Shows how to migrate a BusinessWare 2.2.1 solution
to BusinessWare 3.1.

Migration: BusinessWare
2.3 to BusinessWare 3.1

Shows how to migrate a BusinessWare 2.3 solution
to BusinessWare 3.1.

Migration: BusinessWare
3.0 to BusinessWare 3.1

Shows how to migrate a BusinessWare 3.0 solution
to BusinessWare 3.1

Table 1 BusinessWare documentation (Continued)

Manual Description

Table 2 Contents of This Guide

Section Contents

Chapter 1, “Introduction to
Connectors”

Provides an introduction to connectors and
connection models, and a glossary of terms.

Chapter 2, “Architecture
Overview”

Provides a description of the connection
model infrastructure and a behind the scenes
view of connection models.

Chapter 3, “Design and
Development Guidelines”

Provides connector design considerations.

Chapter 4, “Creating Java
Components for a Connector
Flow”

Describes how to create the user-
configurable pieces of a connector flow and
how to use the Connector Generator Tool to
automatically generate many of the pieces.
vii

Preface

s.
Conventions

This manual uses the following conventions:

� Monospace

Specifies filenames, object names, and programming code.

Example: User names are located in the/admin/users folder.

� Italics

Introduces new terminology, highlights book titles, and provides emphasi

Example: Anoperationis a defined action that is meant to be applied to a
given class of software objects.

Chapter 5, “Writing Java
Connectors”

How to write the Java class for a source or
target connector flow. a detailed explanation
of sending and receiving events, saving the
state of connector and transforming events.

Chapter 6, “Writing C++
Connectors”

How to write the C++ class for a source or
target connector flow and use the C++
wrapper (FlowBridge).

Chapter 7, “Defining Event
Interfaces”

Describes event specification in IDL and
ODL and registering metadata.

Chapter 8, “Writing a
Transaction Resource”

Shows how to write a transaction resource
and provides various strategies for creating
robust one-phase commit transaction
resources.

Chapter 9, “Handling
Errors”

Explains error handling, error events, error
codes, logging and log levels.

Chapter 10, “Miscellaneous
Development Issues”

Discusses multi-instancing; nested router;
and customized transformer methods.

Chapter 11, “Installing
Connectors and Connection
Models”

How to install connectors and connection
models using initialization files, templates,
and command-line tools.

Appendix A, “Reference” Listing of the connector API classes and
methods.

“Glossary” Definitions of terms used throughout this
guide.

Table 2 Contents of This Guide (Continued)

Section Contents
viii BusinessWare Connector Programming Guide

Preface

e

ts

nated
e
d

� Bold

Highlights items.

Example: From the list, select theproperties item.

Contacting Vitria

If you have any questions regarding Vitria or any of the Vitria products, pleas
contact Vitria using the resources listed in this section.

Headquarters

Vitria Technology, Inc.
945 Stewart Drive
Sunnyvale, CA 94086
1-408-212-2700

http://www.vitria.com

Technical Support

Vitria Technical Support provides comprehensive support for all Vitria produc
through our Technical Support web site:

http://help.vitria.com (login and password required)

If you need a login for help.vitria.com, please send your request to:

contractadmin@vitria.com

Each customer who has purchased a support contract has two or more desig
individuals who are authorized to contact Vitria Technical Support. If you hav
questions about using the BusinessWare products, please have a designate
person at your site open a case with Vitria Technical Support.

Documentation

If you have any comments on the documentation, please contact the
Documentation group directly:

documentation@vitria.com

We’d like to hear from you!
ix

http://help.vitria.com

Preface
x BusinessWare Connector Programming Guide

1
 1INTRODUCTION TO CONNECTORS
uces
tom

tem.
tion,

are

stem
rther
rnal

ta

the

rt,
re
TheConnector Programming Guideprovides conceptual and technical
information for developers who want to createconnector flows, the software
components that link external systems to BusinessWare. This chapter introd
some of the key concepts developers should understand before creating cus
connectors, including definitions of terms such as “connector flows” and
“connection models.” SeeBusinessWare Foundationsfor additional background
information about BusinessWare.

This chapter contains:

� BusinessWare Connectors

� Next Steps

BUSINESSWARE CONNECTORS

BusinessWare is an event-driven publish-subscribe distributed computing sys
That means that for an external system to become part of a BusinessWare solu
the data with which the external system inherently deals must be provided to
BusinessWare in the form that BusinessWare can understand, that is, as
BusinessWareevents.

That’s essentially the role of a BusinessWare connector. A connector is a softw
component that enables BusinessWare and external systems to interact.
Connectors are software components that can take data from an external sy
(external to BusinessWare) and turn the data into BusinessWare events for fu
processing, or can receive BusinessWare events and export them to an exte
system. Specifically, connectors can be one of three general types:

� A source connector, which obtains data from an external system, converts da
into events, and sends events to other flows.

� A target connectorreceives events from other flows and passes the data to
external system.

� A source-target connectorboth sends and receives events. For the most pa
source-target connectors also translate or transform events, hence they a
typically referred to astransformers.
1

ent

he
ee

low

to a

nnel
tion

tion

, in
are

ffice

re

are

t of a

hem
CONNECTORS AS A TYPE OF FLOW

At a lower level, “connectors” describes a particular type of software compon
called aflow—an object that can that can receive, process, and send events
because it inherits these specific characteristics from the Vitria Flow class. T
three types of connectors just described are more precisely referred to as thr
different types of flows.

Connector flows are not the only type of flows.Channel sourcesandchannel
targetsare also flows; these flows communicate with BusinessWarechannels—
persistent BusinessWare structures that hold event information. (For more
information, see theBusinessWare Programming Guide.) Channel target flows
and channel source flows inherit their basic characteristics from the ChannelF
class. A ChannelFlow communicates with a single channel. A ChannelFlow
object either publishes to a channel (and is thus a target flow) or subscribes
channel (and is thus a source flow), but not both.

Multi-threaded subscriber is like a channel source in that it subscribes to a cha
and sends events that it receives from the channel to the next flow in a connec
model, but multi-threaded subscriber enables multiple instances of a connec
model to run concurrently (providing concurrent event processing); multi-
threaded subscriber can dispatch events to different instances. (SeeBusinessWare
Connection Modeling Guidefor more information.)

CONNECTION MODELS

Flows of all types may be connected together into a directed graph—aconnection
model—to process and distribute events. A connection model transports data
the form of events, between end points. An end point might be a BusinessW
channel, or an external system, such as a database, a file system, or a front o
application.

In fact, flows function only within the context of a connection model; as softwa
components, they cannot run without the underlying services provided by the
connection model and the associated infrastructure provided by the BusinessW
runtime environment. Flows package discrete functionality into re-usable
components that business users can customize prior to runtime in the contex
specific connection model

Connection models and the connector flows and transformers that comprise t
can be manipulated visually in the BusinesWare Console, as shown in the
screenshot.
2 BusinessWare Connector Programming Guide

Introduction to Connectors

nge
ting

tion
in”
and
t”

tor
; you

tion

ing

s a
ed
Connection models can include a variety of flow types needed to perform a ra
of tasks, from communicating with channels, transforming events, and inspec
data. In the example below, the lines out connection model includes two end
points, a Line Source Flow and a Channel Target flow. In between are two
transformers, ASCII to String and Format as Payroll.

Integrating an external system with BusinessWare often requires two connec
models—one to handle input to BusinessWare (in the screenshot, the “lines
connection model that’s displayed in the Console) from the external system,
one to handle input from BusinessWare to the external system (the “lines ou
connection model).

CONNECTORS BUNDLED WITH BUSINESSWARE

BusinessWare is bundled with several source connector flows, target connec
flows, and transformers. These are installed when BusinessWare is installed
can access them through the BusinessWare Console. Business analysts,
developers, and others can incorporate these as needed in their own connec
models.

In addition, BusinessWare includes severalconnection model templates—pre-
wired connection models with some basic combinations of connector flows,
transformer flows, and channels that can be used as starting points for creat
new connection models.

For example, the File to Channel template, available in the Console, provide
File Source flow, a Simple Data Transformer, and Channel Target flow, all wir
together in the Connection Modeler, ready for configuration.
3

rce-

file

ves

ts,
rce-

me,
m

ve

t it

efine

with

d

wide
ria’s
Here are brief descriptions of some of the connector flows, transformers (sou
target flows), and transformation tools included with BusinessWare:

� The File Source connector is a source flow connector. The File Source
Connector retrieves files from a file system and creates events using the
system data. It does not receive events from other flows.

� The File Target connector is a target flow. The File Target connector recei
events from another flow and writes the event data out to files in the file
system. It does not send any events to other flows.

� The Simple Data Transformer is a source-target flow. The Simple Data
Transformer receives events, transforms them into different types of even
and sends the transformed events to another flow (or to other flows). (Sou
target flows don’t have to transform events, but they usually do.) More
specifically, the Simple Data Transformer accepts a class and a method na
and calls that method when it receives events. It takes the return value fro
the method, and sends it to its target list of flows (the list of flows that recei
events from the Simple Data Transformer).

� The RDBMS connector is a source-target flow. It can transform events, bu
often just moves events through a connection model in some way. For
example, the RDBMS connector can obtain a result set from an external
system and then publish the result set onto a channel, without any
transformation.

� BusinessWare Transformer— A comprehensive GUI tool that provides
numerous built-in features. Vitria recommends using this for most all your
data and event transformation needs.

� Spreadsheet Transformer — Transforms events using a spreadsheet to d
transformation rules.

These are just some of the many connector flows and transformers bundled
BusinessWare. See theBusinessWare Transformer Guideand theBusinessWare
Connection Modeling Guidefor complete information about using these
connectors and transfomers in the context of connection models.

PACKAGED CONNECTORS

In addition to bundled connectors, Vitria also offers special optional package
connectors designed to integrate enterprise application suites, database
management systems, such as Oracle, SQL Server, PeopleSoft, SAP and a
array of other software. New connectors are being released frequently; see Vit
web site for a current list.
4 BusinessWare Connector Programming Guide

Introduction to Connectors

eral
ew
ese
ch

nd

r

rent

r

CUSTOM CONNECTORS

In addition to offering bundled and packaged connectors, Vitria exposes sev
interfaces and classes in BusinessWare that developers can use to create n
connector flows for external systems or applications not covered by one of th
other two approaches. This guide provides information primarily for creating su
custom source connector flows and target connector flows; in addition, you’ll fi
some information about transformer (source-target connector) flows.

In addition to the interfaces and classes that you’ll use in your own
implementations, Vitria provides several utility programs that will facilitate you
development efforts. You’ll find information about these topics throughout the
remainder of this Guide. (See theBusinessWare Programming Referencefor
hyperlinked documentation for Java, C++, and IDL classes and interfaces.)

The EBankJavaSource connector, shown in the connection model in the
screenshot below, is an example of a custom-developed connector:

NEXT STEPS

Before developing a custom connector flow, developers should review the cur
release of theBusinessWare Connection Modeling Guideand explore the options
in the BusinessWare Console to see if a connector flow, connection model, o
template already exists that solves the connectivity problem.
5

g the

e

To get started developing, you should:

� Gain an understanding of BusinessWare connector architecture by readin
next chapter. Refer to theBusinessWare Foundationsmanual and the
BusinessWare Programming Referencefor additional information about the
architecture.

� Install and configure BusinesWare on your development platform. See th
BusinessWare Installation Guide for Windows NTfor details. SeeChapter 3,
“Design and Development Guidelines”for development platform
requirements.

� Install and step through theEBank Sample—it takes about an hour—to give
yourself hands-on exposure to all the concepts covered in this guide,
including: writing a flow with calls to external APIs, implementing a
transaction resource, defining events in IDL, and other key topics.

� Review theConnector Certification Guidelines for BusinessWarefor
complete details on ensuring that your connector meets all Vitria
requirements.
6 BusinessWare Connector Programming Guide

2
 2ARCHITECTURE OVERVIEW
g of

ses

se

re)
-to-

r
n

which

cess

ork

hen
e

Before writing a custom connector, developers should have an understandin
BusinessWare and connectors from several different frames of reference,
including: how connectors fit into the BusinessWare architecture; how the clas
and interfaces that comprise a connector flow are put together; and from a
functional perspective, what happens at runtime. This chapter addresses the
topics and includes the following sections:

� BusinessWare Basics

� Supporting Infrastructure

� Development Architecture

BUSINESSWARE BASICS

In simple terms, BusinessWare is an event-based distributed computing
environment that builds on CORBA (common object request broker architectu
and other leading technology infrastructure to provide a platform for business
business application integration. Key components include the Communicato
server, which provides high-speed asynchronous event-based communicatio
between various BusinessWare components; and the BusinessWare server,
essentially controls all other servers and processes.

The BusinessWare server (bserv) is a CORBA server that provides naming, ac
control, persistence (metadata store), transactions, and activation—the
BusinessWare server starts all other servers, processes, and containers, and
monitors all running processes, including connection models.

The core BusinessWare architecture also includes a comprehensive framew
(EMT Framework) that supports localization and internationalization. See
BusinessWare Foundationsfor complete information about BusinessWare
architecture.

Two areas of the BusinessWare architecture that developers must consider w
they write a custom connector include the repository (metadata store) and th
EMT Framework, as discussed below.
7

t

that
ctors
the

e

s,
l

or
t

ism

a

ther
,
.”
ed
METADATA REPOSITORY

The BusinessWare repository stores (persists) metadata about events; even
information is stored using IDL (interface definition language) or ODL (object
definition language; see“Glossary”for definitions of terms).

The BusinessWare repository also stores information about BusinessWare
objects—the flows, connection models, business process, and other objects
make up a BusinessWare solution. Developers creating new or custom conne
write these objects during the development process, and then install them in
repository.

See theBusinessWare Metadata Guidefor more information about metadata. Se
Chapter 7, “Defining Event Interfaces”for information about working with
metadata to create new event type definitions.

THE EMT (ERROR/MESSAGING/TRACING) FRAMEWORK

One basic principal of good software engineering is that text-based message
including error messages and text labels, should be separate from the actua
program code. Code designed with this principal in mind is much easier to
maintain and to adapt to different languages or rapidly-changing business
requirements.

Adhering to this principal, Vitria provides the Error, Messaging, and Tracing,
EMT Framework, a complete messaging infrastructure in BusinessWare tha
facilitates the efforts of both internal and external developers to deliver highly
portable and easy to localize code. The EMT Framework provides the mechan
for separating text strings from the actual program code.

Briefly, implementing the EMT Framework involves creating a resource file—
text file that contains all the text strings for the system (seeFigure 2-1 on page)—
and then compiling the file using a special utility program provided by Vitria
(rescomp, or “resource compiler”). The resource compiler generates several o
files that you then compile and link with several other BusinessWare classes
ultimately producing a shared library file (a .dll or .so) called a “locale bundle
This locale bundle essentially comprises a messaging API to which you emb
calls in your connector source code.
8 BusinessWare Connector Programming Guide

Architecture Overview

ange
mes

stics
d

n

run
w
tion
To change the text messages (display, error, label, and so on), you simply ch
the text in the resource file, regenerate, and re-compile. Resource files map na
to strings, as shown in this example from theEBank Connector Sample:

Figure 2-1 Resource Text File for EMT Framework

For information about creating the text file, see theBusinessWare Programming
Guide, Chapter 23, Error, Message, and Tracing Framework.

SUPPORTING INFRASTRUCTURE

Connector flows are software components that inherit many basic characteri
from the Vitria flow and connector APIs. A flow can receive, process, and sen
events; depending upon which of these functions a flow performs, it will be a
source, target, or source-target flow.

Flows operate in the context of a connection model; connection models run i
container servers, provided by the BusinessWare server (bserv). When a
connection model is started, bserv instantiates a container server in which to
the connection model (if one is not already started); bserv also creates a Flo
Manager, which is an object that controls all the flows that comprise a connec
model. Flow Manager has an associated Transaction Service and an Error-
handling Model. These infrastructure facilities are discussed in this section.
9

ble

pOn

error
nd

p

this
mize
ERROR MODEL (ERROR GRAPH)

The connector runtime provides a built-in error model—a flow graph compara
to a connection model—with every connection model. As shown in the
screenshot, the error model usually consists of an Event logger flow and a Sto
flow.

� An Event Logger flow converts error messages to events. It passes these
events to other flows that can take the appropriate error recovery action a
logs messages to any specified log files.

� A StopOn flow is a Simple Data Transformer flow. By default, it is set to sto
the connection model when specified errors occur.

The architecture makes no assumptions about what actions can occur within
built-in model; the model designer (business analyst, other users) must custo
the error model to enforce the appropriate error-handling policies.

Figure 2-2 Error Model as displayed in the BusinessWare Console
10 BusinessWare Connector Programming Guide

Architecture Overview

r
del.
nts.
rt.
el.

t to

they

ust

r or

”

be

in
n
t
-
re

t. To

rnal
Specifically, business analysts or other end-users can change the settings fo
Event logger and StopOn flow, delete them, or add new flows to the error mo
They can set the StopOn flow to RestartOn, AbortOn, or SkipOn specific eve
(RestartOn will stop the connection model for a period of time and then resta
AbortOn will abort the current transaction but will not stop the connection mod
SkipOn ignores a specified event; for instance, you might use SkipOn for an
innocuous event that you aren’t handling in your regular model but don’t wan
stop or abort processing because of the event.)

Furthermore, developers can write custom methods to handle error events as
see fit. For details, see“Customizing Methods” on page 93.

To send errors to the error model from a custom connector flow, developers m
write error-handling code by calling the Logger interface as discussed in“Log
Levels” on page 89.

TRANSACTION ARCHITECTURE

The BusinessWare platform includes an embedded transaction service that
manages and coordinates transactions. Atransactionis a logical unit of work in
which multiple changes to distributed databases (or other resources) all occu
none occur.

By definition, the resources involved in transactions must maintain their “ACID
properties; that is, the transaction isatomic(all or nothing, as just described).
Furthermore, data on all resources must always beconsistent, regardless of
whether the transaction commits or aborts. Multiple transactions running
concurrently on the same set of resources must occur as if inisolation. And
finally, once a transaction commits, changes to the resources involved must
durable, regardless of any system failure after that point. (SeeChapter 8, “Writing
a Transaction Resource”andBusinessWare Foundationsfor additional
information about transactions.)

The two-phase commit protocol is a way to coordinate the participants in a
distributed transaction so that the resources involved in a transaction mainta
these characteristics (atomicity, consistency, isolation, durability). Transactio
services typically implement this protocol through a transaction manager tha
coordinates all the resources involved in a transaction by by means of a ‘pre
commit’ phase: in essence, all resources can tentatively make changes befo
committing.

Every connection model inherently has a transaction service associated with i
use the transaction service, developers must create atransaction resource—a Java
or C++ class associated with the flow that implements the specifics of the exte
API’s transactional semantics.
11

action
l

ng

se
col,

s.
Developers create a transaction resource for any flow that will engage in
transactions. The transaction resource acts as an interface between the
BusinessWare transactions and the external system’s transactions. The trans
resource contains all the logic to commit or abort transactions on the externa
system.

Transactions in BusinessWare are implicit: Unlike other transaction processi
systems that may require explicit commands to start or end a transaction,
BusinessWare starts a new transaction automatically for each and every
connection model whenever:

� a connection model is started

� a transaction is aborted

� a transaction is committed

The transaction service supports one-phase transactions as well as two-pha
transactions, so if the external system doesn’t support two-phase commit proto
you can still include the external system in transactions.

SeeChapter 8, “Writing a Transaction Resource”for detailed information about
implementing support for transactions in a connector flow and for additional
details about one-phase and two-phase transaction resource implementation
12 BusinessWare Connector Programming Guide

Architecture Overview

o
l

e

ts
ts to

sly,
g
are
e
a

an
FLOW MANAGEMENT

Two or more flows that are wired together comprise a connection model (als
referred to as a “flow graph,” or simply “model” or “graph”). A connection mode
can be as simple as a single source flow and a single target, or may compris
numerous flows and transformers.

Figure 2-3 Canonical Connection Models

The figure shows two generalized connection models, one that picks up even
from an external system (by means of a source flow) and one that sends even
an external system, by means of a target connector flow.

Events are moved into a connection model in one of two ways: asynchronou
using an underlying ‘push’ mechanism; or synchronously, using an underlyin
‘request-reply’ mechanism. Either way, within the connection model, events
synchronously pushed from flow to flow, from the source connector flow to th
ultimate target. The last flow in the model returns back to the source. Here’s
more detailed description:

1. The first flow in the model receives the event, perhaps from a channel or
external trigger. It then calls its owndoPush() method to deliver this event
to the next flow in the model.

2. The next flow receives the event, processes it, and calls its owndoPush()
method.

Source Connection Model

source
connetor
flow
(connector)

transformer
flow

channel
target
flow

(publisher) channel

Target Connection Model

target
connector
flow

(connector)

transformer
flow

channel
source
flow

(subscriber) channel

External
System
13

e

ixed
as

are

nd
ent

eps

on,

s a

ed

ion
3. When the event reaches the last flow and it has successfully processed th
event, each flow returns until the originaldoPush() call of the source flow
returns.

4. At this point, because the event has successfully traversed the entire
connection model, the source flow can callcommit() on the Transaction
Service (if the commitAfter_ parameter (boolean) was set to true.) This is
typically done within the source flow’sdoPush() method.

The transaction service then launches into its two-phase (or one-phase, or m
two-phase and one-phase) logistics with all the transaction resources that it h
from this model. SeeChapter 8, “Writing a Transaction Resource”for additional
information about transaction processing in the context of a BusinessWare
connector.

Also behind the scenes, some of the the key software components that work
together to provide functionality across a connection model include:

� The Flow Manager, the object in charge of the connection model. Each
connection model has its own flow manager.

� The Flow Environment (Flow Env), a mechanism controlled by the Flow
Manager that holds references to the key services provided by BusinessW
infrastructure, including:

� Transaction Service (described in“Transaction Architecture” on page 11)

� Logger, which is used by flows in the connection model to log errors a
messages and send them to log files and elsewhere (including the Ev
Model).

The Flow Manager wires the runtime flows together in the same way as the r
were wired together

� The flow adds a transaction resource to the Transaction Service. The
transaction resource implements the required methods for participating in
transactions.

� When the flow calls the Transaction Service to commit or abort a transacti
the Transaction Service calls the methods in the transaction resource to
commit or abort.

The services provided by BusinessWare to connection models are passed a
reference in the Flow Env. (Transaction Service and Logger aren’t the only
services, but they’re typically the only services at this time that developers ne
to specifically consider in the code they write.) At runtime, the Flow Manager
passes the Flow Env from flow to flow inside a specific instance of a connect
model, and the flow obtains the references it needs.
14 BusinessWare Connector Programming Guide

Architecture Overview

n

tes

e
The

he
to

.

mes

w’s
DEVELOPMENT ARCHITECTURE

The flow itself is implemented by means of several different files:

� The connector definition (def), a Java interface that contains method
signatures to set and get any user-configurable properties (any informatio
that a business analyst must enter before starting the connection model).

� The connector representation (rep), a Java class that handles and stores the
properties listed in the def (implements the get and set methods) and crea
the flow when the connection model is started. The rep also implements
methods to import and export configuration information to and from the
BusinessWare repository.

� Theflow, a Java (or C++ class) in which all of the work of connecting to th
external system and sending and receiving information is accomplished.
Flow implementation contains the code for starting and stopping, and for
sending or receiving events from the external system. It’s in the code for t
flow that you’ll invoke calls on the external API; add a transaction resource
the transaction service (if appropriate for the flow), and refer to the logger

� A BeanInfo classthat defines more user-friendly display information for the
BusinessWare Console about the properties in a flow, such as property na
and descriptions.

The relationships among the def, rep, rep BeanInfo, and flow files, and the Flo
location within a connection model is shown in this figure:

Figure 2-4 Def, Rep, BeanInfo, and Flow in context of connection model

Source Connection Model

source
connector
flow
(connector)

transformer
flow
(source-
target flow)

•channel
target flow
(publisher) channel

Target Connection Model

target
connector
flow

transformer
flow

channel
source
flow
(subscriber)

channel

Bean

Definition

Representation

Flow
External
System
15

er;
n

ing
del

om
n
tion

nd

rks

m.

in

ction
,

e
ness
When a connection model starts for the first time, bserv starts a Flow Manag
Flow Manager coordinates and manages the creation of all flows in any give
connection model in the same general way, as described below:

1. Flow Manager creates the Reps for all flows in the connection model, start
with the Reps in the Error Model before moving to the Reps in the main mo
(connection model). Flow Manager sends the Flow Env to each Rep.

2. Flow Manager tells the Reps to read their propery values (import them) fr
the repository, which stores either the default values (for a new connectio
model) or the values that were last saved by a user of an existing connec
model.

3. Flow Manager calls createFlow on the Rep.

4. The Rep creates the flow (passing it the Flow Env) and calls the flow’s
init() method.

5. The flow iniatializes itself, creating a transaction resource (if appropriate), a
passing the resource to the transaction service.

6. The Flow Manager callsstartEvents() on each flow, first in the error
model and then in the main model. It begins with the last target flow and wo
backwards to the first flow source.

7. The flow connects to the external system (inside thestartEvents()
method). The flow handles events and data transfer with its external syste

8. Flow Manager calls stopEvents on each flow.

9. The flow disconnects from the external system (inside thestopEvents()
method).

All these activities occur within the context of a connection model. If any flow
the model throws an error instartEvents() , the Flow Manager works back
through the connection model and callsstopEvents() on all flows. If no
errors are returned, the connection model is up and running; a green light is
displayed in the Console namespace.

If there are errors, an error message displays and the small icon of the conne
model (displayed in the Console namespace) turns yellow or red. (In addition
information about the error may be saved to the log files.) (See theBusinessWare
Connection Modeling Guideand theBusinessWare System Administration Guid
for details about runtime operations and other details from an end-user (busi
analyst) perspective.)
16 BusinessWare Connector Programming Guide

3
 3DESIGN AND DEVELOPMENT GUIDELINES
s.

ough

es
to

rnal

Is it
of
ing

poll

lish

tem
This chapter provides information about design considerations for connector
Topics include:

� Design Considerations

� Getting Started

DESIGN CONSIDERATIONS

Designing a BusinessWare connector for an external system starts with a thor
analysis of the external system. You must learn everything you can about its
characteristics because much of the work of creating a new connector involv
making calls to the external API in your code, and turning the external data in
BusinessWare events.

Here’s a list of questions you should consider as you begin examining the exte
system:

� What kind of external system is it, and what are its basic characteristics?
a database, a file system, or a front-office application? Knowing the type
system to connect to will help determine the method to use in communicat
with the system and the required API calls.

� What are the characteristics of the external system’s API? Specifically,

� Does the API support asynchronous or synchronous (request/reply)
communications? For example, can the API notify the connector
asynchronously when data has changed, or will the connector have to
the system for changes?

� Does the API return data (that can be used by a target connector to pub
an event, making it a source-target flow)?

� Does the API support C++ or Java?

� Is the API thread-safe? If so, does it make sense to support multi-
instancing in the connector?

� Does the external system support transactions, and if so, does the sys
implement a one-phase or a two-phase commit protocol?
17

tor
nged

an

e an

tem
rs,
at
te

em,
ce-

ers
a
ncy,

ets

e

� How are transactions demarcated in the external system?

� How are transactions committed or aborted in the external system?

The characteristics of the external system will determine how the connec
you create receives signals about changes to data, how it retrieves the cha
data, how it modifies events in the third-party system, and how it will
implement commits and aborts in the transaction resource.

With an understanding of the characteristics of the external system, you c
start addressing questions specific to BusinessWare:

� Does the API provide access to metadata, and if it does, should you provid
IDL/ODL generator with your connector?

� How should you define the events? What type of data does the external sys
provide? Will the connector need to process email messages, sales orde
customer information, or raw data streams? Identify the type of data so th
you can group the data type into events. Which will be the most appropria
way to model the events? IDL or ODL?

� Which type of connector is needed for your integration challenge? Do you
need to create a source connector, target connector, or source-target
connector? A source connector retrieves information from an external syst
a target connector enters information into an external system, and a sour
target connector both enters and retrieves information.

� What type or required or optional input is needed from connector users
(business analysts or others who will interact with the connector)? Will us
need to enter a database instance name or machine name to connect to
database? Will business users need to be able to configure polling freque
or number of events to process before a commit?

The information the user inputs will be turned into properties that the user s
through the BusinessWare Console on the flow property sheets.

For example, the API that’s exposed to developers in the EBank example
comprises three methods—balance, deposit, withdraw—as shown in this cod
excerpt:

public interface EBankCommands extends
com.vitria.fc.object.Obj {

. . .

double balance(int account);

...

void deposit(int account, double amount);

...
18 BusinessWare Connector Programming Guide

Design and Development Guidelines

r

s:

ata

t of

se.

e
le,
ou
e.

the
the

r

id
nal
ents

d
that

nt.
n

void withdraw(int account, double amount);
...

CONNECTOR DESIGN GUIDELINES

By their very nature, external systems are beyond the control of the connecto
developer. To adapt easily to dynamically changing business scenarios, you
should keep these guidelines in mind when you design and create connector

� Keep event code independent of the external system’s data format—the d
format of the external system could change. For instance, an event could
consist of an object type, an action to be performed on the object, and a lis
name/value pairs that holds the information about the object.

� Isolate code with specific tasks into functional components that you can reu

� Generalize the code you write as much as possible so that upgrades to th
external system don’t require new versions of your connector. For examp
avoid hard-coding names of tables and other external system entities; if y
do, when table or resource names change, you’ll have to rewrite your cod
Instead, reference table names dynamically in the connector code.

� Connect to the source or target only when the connection model starts (in
startEvents method); disconnect when the connection model is paused (in
stopEvents method). Doing otherwise—connecting each time a connecto
needs to poll—is both inefficient and non-standard.

� Don’t read from and write to the external system from the same flow. Avo
writing source-target connectors that both read from and write to the exter
system; this sort of connector design breaks the idea of separate compon
and minimizes reuse.

� Although you should avoid writing source-target connectors that both rea
from and write to an external system, you can create source-target flows
you can embed within a specific connection model, such as these:

� A source connector that receives events from other flows or other
connection models: For example, you may want to notify a source
connector of new information in the external system by sending it an eve
(The Vantive source connector operates this way, receiving notificatio
from the RDBMS connector.)

� A target connector that sends events on to other flows or models: For
example, a target connector that sends a “success” event once it has
inserted data into the external system.
19

not

is

r
or
lue

nted

g or

ce

sers
to
tion
rd.

e to

eric

lete
t
.

te.

tion
NAMING STANDARDS AND UI CONVENTIONS
� Capitalize all Property names (just the first letter in each property name).

Property names should be short and descriptive—just a couple of words,
an entire sentence.

� Provide a short description (one to three sentences) for each property. Th
description should inform a knowledgeable user (a business analyst) the
purpose of the property.

� Provide default values for any Property when it makes sense to do so. Fo
example, if the third-party application for which you’re creating the connect
usually runs on IP port 1521, then your Rep should include this default va
for the property.

� Check for invalid values when changing a property’s value and throw a
DiagError when appropriate.

� Implement custom property editors as needed. Users should only be prese
with valid choices only; to do this, use custom property editors that are
designed to accept legitimate values only.

� Use the processing tab to enable editing of properties related to processin
transformation. Properties that can change the behavior of the connector
(unlike properties, such as name and password, that are more utility than
function) may require a more sophisticated GUI than a property editor. Pla
such properties inside the processing tab, or provide modal buttons that
provide dialog boxes.

� Provide Wizards when appropriate, such as for those tasks that require u
to follow a predefined sequence of steps. For example, if you want a user
log in, select some objects in one place and then provide target or destina
information, you can guide them through the necessary steps with a Wiza

� Integrate connector-related GUIs with the console so that users don’t hav
run command-line utilities.

� Provide appropriate titles to your message boxes in the format
<operation><object>. For example, “Saving Spreadsheet.” Don’t use gen
words such as “Error,” Warning, or Information.

� Keep the body of the message text in the message box to three (3) comp
sentences or less. If you need more than three sentences, display a shor
message and tell the user to look in the logs for more detailed information

� Create a 32x32 pixel icon (in .gif format) for each connector flow you crea

� Keep all connector code in a Java package that follows the naming conven
com.YourCompanyName.NameofConnector(or application)
20 BusinessWare Connector Programming Guide

Design and Development Guidelines

d
.

e to

the
Event Names

Event names should be lower-case for the first word, initial-cap for every wor
after that. For example, dateEvent, anotherKindOfEvent, aThirdKindOfEvent

File Names

Module Names

Use initial capitals on every word; for example,MyModule.

GETTING STARTED

As mentioned earlier in this chapter, developers who want to create custom
connector flows should first consult theConnection Modeling Guideand ensure
that no connector flow exists to solve their connectivity problem.

For example, the BusinessWare Transformer is a powerful source-target
connector flow that provides many built-in operations that you can use overrid
create your own transformations.

If you’re a developer who wants to create a new connector flow to integrate
BusinessWare with a specific third-party software package, be sure to review
Connector Certification Guidelines for BusinessWarefor guidelines, packaging
instructions, naming conventions, and the like.

Table 3-1 Naming Conventions for Java Files

Source Flow Target Flow Source-Target Flow

Def nameSourceDef nameTargetDef nameSourceTargetDef

Rep nameSourceRep nameTargetRep nameSourceTargetRep

BeanInfo nameSourceRepBeanInfo nameTargetRepBeanInfo nameSourceTargetRepBeanInfo

Flow nameSourceFlow nameTargetFlow nameSourceTargetFlow

Transaction
Resource

nameSourceResource nameTargetResource nameSourceTargetResource
21

tem

e

e

e
ver
es).

his

ities,
ine
that
Ware

art

odel
u as
tion
sing

on
th
p on
rall
Development Platform Setup

Your development environment should include the Java JDK 1.2. Minimum
developer’s workstation requirements include 256-Mbyte of RAM (512-MB
recommended). Install the BusinessWare software on your development sys
according to the installation instructions. You’ll need a C++ compiler, Java
compiler, and Java Runtime, as well as the BusinessWare software.

The connector APIs are contained in the BusinessWare. jar file, located in th
%VITRIA%\java\win32 (on Windows NT) or $VITRIA/java/sparc_solaris for
Solaris; make sure your CLASSPATH is configured correctly. (If you install th
core BusinessWare platform on your development machine, accepting the
defaults, the CLASSPATH should be set correctly.)

CHECKLIST FOR DEVELOPING A CONNECTOR

Throughout this guide you’ll find example code from the EBank Connector
sample, which is installed with BusinessWare. The EBank Connector Sampl
includes the external system and an API for that system (a Java banking ser
application and a client that can deposit, withdraw, and check account balanc
To facilitate your own understanding of the BusinessWare environment and
connector implementation, Vitria recommends that you install and configure t
sample application. SeeEBank Connector Samplefor details.

Developing a connector encompasses three broad sets of development activ
starting with defining the events that your system will send or receive. To def
the events, you must first examine the external API and identify the data types
the external system uses, and decide how best to define the data as Business
events.

Providing transactional semantics for your connector flows will also be a big p
of your development efforts. Although BusinessWare provides a built-in
Transaction Service that automatically starts transactions on the connection m
and that manages the pre-commit, commit, and abort activities on the flow, yo
developer must determine whether your connector flow should have a transac
resource connected to it, and if so, you must write the transaction resource u
the transactional semantics of the external API.

Thus, before you can do much of anything programmatically, you must focus
a thorough analysis of the external API and understand its characteristics wi
special attention to the concepts of events and transactions. With a firm gras
the external API, you can begin defining the events and thinking about the ove
design of the connector flows themselves.
22 BusinessWare Connector Programming Guide

Design and Development Guidelines

at
ple,
nd
cess.

ially

e
ee

es

eive

a

The basic steps for developing connectors are listed below. However, note th
many of these activities are concurrent or dove-tail into each other. For exam
the code for your flow (step 2) will include code for handling events (step 3) a
a reference to a transaction resource (step 3), so this isn’t exactly a linear pro
Before attempting to build your own connectors, readChapter 2, “Architecture
Overview” to learn about how connectors and other flows work within a
connection model.

1. Design the connector after you analyze the external system, noting espec
the characteristics of the API and data types that the system uses. See“Design
and Development Guidelines” on page 17before you get started.

2. Write the connector flow.

a. Identify the portions of the connector that you can generate by using th
Connector Generator Tool and the portions that you will need to write. S
“Creating Java Components for a Connector Flow” on page 25.

b. Implement the portions of the flow that start, pause, and connect to the
external system, as described in“Introduction to Java Connector Flows”
on page 45.Concurrent with this task, you should define the data interfac
and event interfaces for the connector. See“Defining Event Interfaces” on
page 65.

c. Write code to exchange data with the external system, to send and rec
events, and to transform events, as described in“Writing Java Connectors”
on page 45.

d. Identify the errors and exceptions the connector needs to handle, and
implement the methods suggested in“Handling Errors” on page 89.

3. To ensure reliable data transfer from the external system to the flow, write
transaction resource to handle transactions as described in“Writing a
Transaction Resource” on page 75.

4. Install the connector into the BusinessWare environment as described in
“Installing Connectors and Connection Models” on page 101.

The remainder of this guide provides information for performing these steps.
23

24 BusinessWare Connector Programming Guide

4
 4CREATING JAVA COMPONENTS FOR A

CONNECTOR FLOW
s of
o.
such
odel

ce
d

ed

ips
This chapter guides you through the process of writing the Java code portion
a connector flow, specifically, the code for the Def, the Rep, and the BeanInf
These elements work together to provide a visual component that end-users,
as business analysts or administrators, can configure as part of a connector m
in the BusinessWare Console as shown in the screenshot onpage 5.

In addition, you’ll see where the actual code for the flow (which is covered in
Chapter 5, “Writing Java Connectors”or Chapter 6, “Writing C++ Connectors”)
fits in to this scheme. Topics in this chapter include:

� Creating the Java components for the Flow

� Step 1: Write the Flow Def

� Step 2: Write the Flow Rep

� Step 3: Write the BeanInfo

� Simplified Development using the Connector Generator

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sample.

CREATING THE JAVA COMPONENTS FOR THE FLOW

Writing the code for a connector flow involves writing several basic Java interfa
and class files that inherit from several other BusinessWare base classes an
interfaces. You can automate the writing of these files and provide the basic
structure for the flow class itself by using the Connector Generator Tool provid
by Vitria; see“Simplified Development using the Connector Generator” on
page 37for information about using this tool. Even if you choose to use the
Connector Generator Tool—and Vitria recommends that you do so, for
simplicity’s sake—you can read through this section first to see the relationsh
among the various files that the tool produces.
25

lso
o

f
ce

for

d in

lf
e in

—
job
the

s,
f the
If you’ll be incorporating data from an external system for which no
BusinessWare event types exist in the BusinessWare repository, you must a
define these events and load them into the repository in order for your code t
generate or receive these events. See“Defining Event Interfaces” on page 65for
information.

STEP 1: WRITE THE FLOW DEF

Every connector flow must have a definition, or Def file, that defines the list o
configurable properties that will comprise the flow. The Def file is a Java interfa
file that inherits from one of three specific BusinessWare class files:

� ConnectorSourceDef

� ConnectorTargetDef

� ConnectorSourceTargetDef

If you’re creating a source flow, you’ll extend the ConnectorSourceDef class;
a target flow, you’ll extend the ConnectorTargetDef; for a source-target flow,
you’ll extend the ConnectorSourceTargetDef. All these classes are containe
thecom.vitria.connectors.common package, so your Def file must start
by importing this package.

NOTE: All the code you write for the flow def, rep, BeanInfo, and the flow itse
should belong to the same Java package. As you’ll see from the example cod
this chapter, the package name for all Java code related to theEBank Connector
Sampleis contained in a package called “jebank” (Java EBank).

As with other Java interface files, the Def file contains abstract methods only
method headers, including parameters, without implementation. The Def file’s
is to provide the list of accessor methods for setting and getting properties on
flow's property sheet. For each property that you want to expose to end-user
create a get method and a set method signature in the Def; do not use any o
reserved words in the table, however.

Table 4-1 Reserved Words

commitAfter name targetEventInterfa
ceList

concurrent resolver targetList

logLevel sourceEventInterfa
ceList

unknownEventFlag
26 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

see

the
,

hat
are

s in
In addition, follow the naming convention for get and set methods, that is, all
lower case “get” or “set” and initial capital for all other words—note
“setPollRate” and “getPollRate” in the listing below.

Here’s a complete example listing of a source flow connector def. As you can
the file imports the entire com.vitria.connectors.common.* package, and then
continues with the get and set method signatures:

package jebank;

import com.vitria.connectors.common.*;

public interface EBankJavaSourceDef extends
ConnectorSourceDef {

public String getIorFile();

public void setIorFile(String iorFile);

public int getAccount();

public void setAccount(int account);

public int getPollRate();

public void setPollRate(int pollRate);
}

Once you compile this interface, you can implement its methods in a Rep as
detailed in the next section.

STEP 2: WRITE THE FLOW REP

The Rep (or “representation”) is a Java class that implements the interface in
Def. The Rep extends the BusinessWare base class appropriate for a source
target, or source-target flow, respectively. The Rep has several other jobs,
including creating the Flow object, passing the Flow Env to the Flow object,
importing a list of events that the flow can receive, exporting a list of events t
the flow can send, and providing a representation for the flow in the BusinessW
repository. The next several sub-sections show you how to write code that
supports all these tasks.

Extend the Appropriate Connector Class

Depending on whether the flow will be a source, a target, or source-target
connector flow, the code for your Rep must extend one of the following classe
thecom.vitria.connectors.common package:

� ConnectorSourceRep
27

ep.

, you
� ConnectorTargetRep

� ConnectorSourceTargetRep

Here’s an example from the top portion of a Java class that implements the
example shown inStep 1: Write the Flow Def. As you can see, this Java class
extends theConnectorSourceRep class and implements the
EBankJavaSourceDef interface.

package jebank;

import com.vitria.diag.TextMessage;

import com.vitria.fc.io.*;

import com.vitria.fc.flow.*;

import com.vitria.connectors.common.*;

import com.vitria.fc.data.List;

public class EBankJavaSourceRep extends ConnectorSourceRep
implements EBankJavaSourceDef {

...

Next in the code you must create instance variables for each property in the R
For example, continuing with the EBank example:

...

protected String iorFile_;

protected int account_;

protected int pollRate_ = 5000;
...

Implement the get and set Methods

In addition to declaring the instance variables and constants in the Rep class
must provide bodies for the methods listed in the Def; here are the
implementations for the sixget andset methods listed in EBankJavaSource
Def interface onpage 27:

...

public String getIorFile(){

return iorFile_;

}

public void setIorFile(String iorFile){

iorFile_ = iorFile;
28 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

e to

the
he

tring
}

public int getAccount(){

return account_;

}

public void setAccount(int account){

account_ = account;

}

public int getPollRate(){

return pollRate_;

}

public void setPollRate(int pollRate){

pollRate_ = pollRate;

}
...

Enable Properties to be Stored in the Repository

The Rep is also responsible for providing methods that will be used at runtim
store and retrieve the properties in BusinessWare. These are found in the
Exportable interface (located in thecom.vitria.fc.io.* package that
was imported into the Rep file).

In addition, the Rep needs a way to reference the Def in the Repository. When
Flow Manager starts to create the flow, it looks in the Repository for the Def. T
mechanism for this is a constant, in this example, the
“EBANKJAVASOURCETAG,” that locates the appropriate method to create
new instances of this particular flow’s Rep.

So one task is to override the getExportFormat() method and return a unique s
of the formcom/my/company/NameOfDefClass:1.0 .

Here’s the example from the EBank source flow Rep code:

...

public static final String EBANKJAVASOURCETAG =
"EBankJavaSourceDef:1.0";

...

public String getExportFormat(){

return EBankJavaSourceRep.EBANKJAVASOURCETAG;

}
...
29

m)
in

rted

ethod
Override the method void exportTo(com.vitria.fc.io.ExportStream stream) by
first calling super.exportTo(stream); and then exporting all the properties:

...

public void exportTo(ExportStream stream) throws
ExportException {

super.exportTo(stream);

stream.writeString(iorFile_);

stream.writeInt(account_);

stream.writeInt(pollRate_);

}
...

Next, you must override void importFrom(com.vitria.fc.io.ImportStream strea
by first calling super.importFrom(stream); and then importing all the properties
the same order that you exported them, as shown in this sample:

public void importFrom(ImportStream stream) throws
ImportException {

super.importFrom(stream);

iorFile_ = stream.readString();

account_ = stream.readInt();

pollRate_ = stream.readInt();

}
...

In your code, be sure you import the properties in the same order as you expo
them.

The Rep must also provide a reference to a create method; reference to the m
is stored in the repository, and when an end-user clicks on the icon for your
custom flow (in the Flow Palette of the Console), Flow Manager will use the
method to return an instance of the flow Rep (the visual component) in the
Console.

...

public static EBankJavaSourceDef createEBankJavaSourceDef(){

EBankJavaSourceRep r = new EBankJavaSourceRep();

r.init();

return r;

}

30 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

lists,
t
o
ector

bject
public static EBankJavaSourceDef
createEBankJavaSourceDef(ImportStream s){

EBankJavaSourceRe p r = new EBankJavaSourceRep();

r.init();

return r;

}
...

Provide Lists of Event Interfaces

Another one of the Rep’s tasks is to provide source and target event interface
if appropriate, to the end user. Target lists are used for event type checking a
runtime. Event interface lists for connectors and transformers are displayed t
show what types of events they can send and receive. The set of events a conn
or transformer can send is called thesource list, and the set of events it can receive
is called thetarget list.

� Call createList if you want to enable users to specify different events.

� Call createListReadOnly if you want to prevent users from specifying
different events.

The methods you’ll override are in thecom.vitria.fc.data.List
package (which is imported in the top of the Rep file as shown in the listing.)

If the Rep is for a source flow, you must implement the
getSourceEventInterfaceList() method to provide a list of event types
that the flow can send (a source list).

Here’s an example from the EBankJavaSourceRep class that creates a List o
that will contain the list for the flow:

...

public List getSourceEventInterfaceList(){

String [] eventNames =
{"vtEBankConnectorModule.EBankConnectorEvents"};

return ConnUtil.toEventInterfaceList(eventNames,
resolver_);

}
...

� For a target connector flow, you’ll override com.vitria.fc.data.List
getTargetEventInterfaceList() .

� For a source-target connector (usually a transformer) implement both
methods.
31

ist.

the

e

e-
To prevent users from editing event types in the Console, use the read only l

Note the variableresolver_ in the listing above: this handles the switch
between the editable and the registered version of an event. (The registered
version is used by BusinessWare at runtime; the editable version is visible in
Console.)

Instantiate the Flow

Another important tasks of the Rep is to instantiate (create the instance of) th
Flow itself:

....

public FlowSource createFlowSource(FlowEnv env){

EBankJavaSource out = new EBankJavaSource();

out.init(this, env);

return out;

}
...

To specify the type of flow to create, write one of these methods in the rep:

� For a source flow, you must override com.vitria.fc.flow.FlowSource
createFlowSource (com.vitria.fc.flow.FlowEnv) in the
FlowSourceDef

� For a target flow, override com.vitria.fc.flow.FlowTarget
createFlowTarget (com.vitria.fc.flow.FlowEnv) in the
FlowTargetDef interface

� For a source-target flow, you must override com.vitria.fc.flow.Flow
createFlow (com.vitria.fc.flow.FlowEnv) in theFlowDef interface

Regardless of which type of flow you’re instantiating (source, target, or sourc
target), you instantiate the flow and then call init(this, env); on the flow in the
initialization as shown in this code segment from the EBank sample
(EBankJavaSourceRep.java):

...

public FlowSource createFlowSource(FlowEnv env){

EBankJavaSource out = new EBankJavaSource();

out.init(this, env);

return out;

}
...
32 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

he

nd

e
se

see
low
flow

od
If you’ll be implementing the flow in C++ (rather than Java), you must create t
flow in the CPPFlow wrapper and return the CPPFlow (you must also import
com.vitria.connectors.flowbridge.*; in the Java file for a Rep that’s used in
conjunction with a C++ flow). Here’s an example of the Java code that would
instantiate a C++ version of the flow:

...

public FlowSource createFlowSource(FlowEnv env){

CPPFlow cppFlow = new CPPFlow(this, env);

cppFlow.setSharedLibName("vtEBank");

cppFlow.setMethodName("CreateEBankSource");

String [] params = new String[3];

params[0] = "" + iorFile_;

params[1] = "" + account_;

params[2] = "" + pollRate_;

cppFlow.setParams(params);

cppFlow.init(env);

return cppFlow;

}
...

At runtime, this code serves to create an object of the appropriate flow type a
initialize the object.

In addition, the Flow Manager will pass in the Flow Env to the object, to provid
it with the references to flow registry and other infrastructure. The flow can u
theFlowEnv object to access the Flow Controller, Flow Status Update,
Transaction Service, or the Logger

The Flow Manager calls the createFlow method, with theFlowEnv object as a
parameter, to create a new instance of the flow associated with this rep.

In this example, the EBankJavaSource is the flow that gets instantiated (you’ll
the code EBankJavaSource in Chapter 5). After creating an instance of the f
object named EBankJavaSource, the Flow Env is passed to the flow, and the
is returned to the caller (the Flow Manager).

Multi-instance Flows

If the flow will be multi-instanced, you must override the getConcurrent() meth
in the Rep, (return true instead of the default false):

public boolean getConcurrent() {

return true;

}

33

errors,
,
(See

is
ill
this

bers
NT
or

ther
u
ple

e

See“Multi-instance Connection Models” on page 99and seeBusinessWare
Connection Modeling Guidefor additional information.

Load the Locale Bundle for the EMT Framework

As discussed inChapter 2, “Architecture Overview,”BusinessWare provides a
complete messaging framework that enables developers to keep messages,
user-interface labels, and other text elements isolated from the body of code
ensuring that their applications can easily be localized to different languages.
“The EMT (Error/Messaging/Tracing) Framework” on page 8for more
information.) The implementation of the framework for a specific application
called the “locale bundle,” a shared library of message text of all kinds that w
be used by the application. The Rep file must include a static block that loads
locale bundle, as in this example:

...

static {

com.vitria.diag.TextMessage.loadBundle("mybundle");

}
...

The name of the bundle is the name of the shared library with any version num
and suffixes removed. For example, the EBank locale bundle for the Windows
platform is a dynamic link library named vtEBankLocale3_o2r.dll; in the code f
the Rep, this is referenced as simply “vtEBankLocale3,” as shown here:

...

static {

TextMessage.loadBundle("vtEBankLocale3");

}
...

However, as with any development project, the text of various messages and o
text that you might want to include in the resource file will likely change as yo
write and fine-tune your code. For that reason, Vitria recommends using sim
placeholder messages during the development process, and leaving the
implementation of the EMT framework to the end of the process, when you’v
fully debugged and completed the connector. SeeBusinessWare Programming
Guidefor information about creating and compiling the resource file.
34 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

Info
u
end-
icon

Info
the
e

for

and
each
ode
STEP 3: WRITE THE BEANINFO

The BeanInfo is the last of the Java-specific files you need to create; the Bean
displays the properties, icons, and flow names in the Console for the Rep yo
create. The BeanInfo enables you to present the underlying methods to your
users in a more readable (to non-programmers) fashion, as well as provide an
to represent what will ultimately be a flow to the user in the Console.

As with the Java source code files you create for the Def and the Rep, the Bean
must also adhere to specific naming conventions. Specifically, you must prefix
name “BeanInfo” with the name of the flow Rep itself. For example, if the nam
of the Rep is EBankJavaSourceRep, you must name the BeanInfo class
“EBankJavaSourceRepBeanInfo.” Here’s the top portion of the BeanInfo file
the EBank source connector:

package jebank;

import com.vitria.fc.data.BeanLib;

import com.vitria.diag.TextMessage;

import java.beans.SimpleBeanInfo;

import java.beans.PropertyDescriptor;

import java.beans.BeanDescriptor;

import java.beans.BeanInfo;

public class EBankJavaSourceRepBeanInfo extends
SimpleBeanInfo {

. . .

You must import the classes from the java.beans package and the two Vitria
packages as shown in the listing, and then you must extend the
java.beans.SimpleBeanInfo class.

Next, override the java.beans.PropertyDescriptor[] getPropertyDescriptors()
make the appropriate setDisplayName, setShortDescription method calls for
configurable property that you want to expose to end-users. (Note that in the c
listing below, the names are being handled by the locale bundle.)

public PropertyDescriptor[] getPropertyDescriptors(){
if (display_ == null){

display_ = (BeanLib.getInterfaceProperties(EBankJavaSourceRep.class));

for (int i = 0; i<display_.length; i++){
if (display_[i].getName().equals("iorFile")){
35

display_[i].setDisplayName(TextMessage.formatMessage(ebanklocale.CommonEBankConn
ectorMessages.IORShort));

display_[i].setShortDescription(TextMessage.formatMessage(ebanklocale.CommonEBan
kConnectorMessages.IORLong));

}
else if (display_[i].getName().equals("account")){

display_[i].setDisplayName(TextMessage.formatMessage(ebanklocale.EBankSourceConn
ectorMessages.AccountShort));

display_[i].setShortDescription(TextMessage.formatMessage(ebanklocale.EBankSourc
eConnectorMessages.AccountLong));

}
else if (display_[i].getName().equals("pollRate")){

display_[i].setDisplayName(TextMessage.formatMessage(ebanklocale.EBankSourceConn
ectorMessages.PollRateShort));

display_[i].setShortDescription(TextMessage.formatMessage(ebanklocale.EBankSourc
eConnectorMessages.PollRateLong));

. . .

To set the display name for the flow, you must also override
java.beans.BeanDescriptor getBeanDescriptor() in your
BeanInfo class:

...

public BeanDescriptor getBeanDescriptor(){

if (beanDescriptor_ == null){

beanDescriptor_ = new
BeanDescriptor(EBankJavaSourceRep.class);

beanDescriptor_.setDisplayName(TextMessage.formatMessage(
ebanklocale.EBankSourceConnectorMessages.JavaDisplayName)
);

}

return beanDescriptor_;
...

To display an icon in the Console, you must override the java.awt.Image
getIcon(int iconKind) method (only 32x32 icons are supported).

...

public java.awt.Image getIcon(int iconKind){

if (iconKind == BeanInfo.ICON_COLOR_32x32){

return BeanLib.getImage(this, "ebsource.gif");

}

else {
36 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

low

Java
up,

you

d
ically

and
return null;
...

Without this code snippet above, the dollar sign in source connector shown be
would not exist:

Once you’ve created the Def, the Rep, and the BeanInfo, you can load these
components into the BusinessWare repository to see how things are shaping
(as long as you also implement some skeleton code for the Flow). To do so,
must create an .ini file that loads this flow type in the repository; see“How to Use
the Connector Generator Tool (Wizard)” on page 38.

JAVA FILE SUMMARY

SIMPLIFIED DEVELOPMENT USING THE CONNECTOR GENERATOR

The code requirements for a Def, Rep, and BeanInfo are highly templated an
standardized, which means that they lend themselves easily to being automat
generated by a programming tool. Vitria provides such a tool, the Connector
Generator Tool, that lets you create these basic Java source code files easily
quickly. There are two versions of the tool that provide slightly different
functionality:

� Connector Wizard, a graphical user interface wizard
(com.vitria.connectors.generator.ConnectorWizard)

32x32 pixel .gif icon

Table 4-2 Naming Conventions for Developer-created (or generated) Java
Files

Source Flow Target Flow Source-Target Flow

Def nameSourceDef nameTargetDef nameSourceTargetDef

Rep nameSourceRep nameTargetRep nameSourceTargetRep

BeanInfo nameSourceRepBeanInfo nameTargetRepBeanInfo nameSourceTargetRepBeanInfo

Flow nameSourceFlow nameTargetFlow nameSourceTargetFlow
37

d

r
er in

sing
ted

in

hen

)
h)

ws
� Connector Generator, a command line version of the tool
(com.vitria.connectors.generator.Connector Generator.

The Connector Wizard enables you to enter the names for your Java files an
numerous other settings in a graphical user interface; it then generates the
necessary Java (or Java and C++) files for you. In addition, you can save you
entries as a special text-based file (a .gen file), which you can open again lat
the tool (or in a text editor).

Once you have a .gen file, you can use the command-line version of the tool, u
the name of the .gen file as an input argument, and generate all files or selec
files. See“Using the Connector Generator Tool and the .gen File” on page 42for
additional details about the .gen file.

Specifically, both the Connector Generator Tool can automatically generate:

� The flow def (the Java interface created inStep 1: Write the Flow Def)

� The flow rep (the Java class file created inStep 2: Write the Flow Rep)

� The flow’s BeanInfo object created inStep 3: Write the BeanInfowhich
controls property display in the BusinessWare Console property sheet

� A base class for the flow and a companion helper class (you’ll need to fill-
the specifics as discussed inIntroduction to Java Connector Flowsin the next
chapter)

� An initialization (.ini) file for the connector (to load the connector flow into
the Console; seeChapter 11, “Installing Connectors and Connection
Models.”)

Once you’ve generated the helper files and the skeleton of the flow, you can t
complete the implementation of the flow as described inChapter 5, “Writing Java
Connectors”(or in Chapter 6, “Writing C++ Connectors”) and work on events,
transactions, and other issues.

HOW TO USE THE CONNECTOR GENERATOR TOOL (WIZARD)

The Connector Generator Tool is located in the %VITRIA%\bin\win32 or
%VITRIA%\bin\TK sub-directory. For Windows NT, a batch file (connwiz.bat
is provided to launch the program; for Solaris, you’ll find a script (connwiz.cs
that you can use to start the tool from a shell.

1. To start the wizard-version of the Connector Generator Tool from a Windo
NT command line, enter this command:

java com.vitria.connectors.generator.ConnectorWizard
38 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

k.
file

u
the

me;

uld

can

ng a
T
far-
is
In a few seconds, the Connector Generator Tool displays; by default, the
Required Info tab is in the forefront of the display and the fields will be blan
The screenshot below shows settings as displayed after opening the .gen
for the EBankSource connector (from the EBank Sample application). Yo
can open an existing .gen file by selecting File-->Open and then browsing
local directory to find the file.

2. On the Required Info panel, enter a meaningful name for the Java class na
this name will comprise the first part of the name of each generated file.

3. TheDisplay namewill be used as the name of the flow in the RepBeanInfo
file and shown in the Console. TheJava packagename is the name of the
package to which all the generated files will belong. On this panel you sho
also select the radio button for the type of connector you are creating.

4. Click on the Parameters tab to display the Parameters tab. On this tab you
enter the properties for the Flow’s property sheet. Each property for the
property sheet is specified with a Java type and a name.

As you can see, this example uses the EMT Framework; rather than havi
hard-coded Display Name and Help Text, methods created using the EM
framework are listed. If you want the property to have a default value (the
right column of the display that’s not fully displayed) you can enter it on th
panel as well.
39

elp
As
eters

you
pe

k
that

the

e to
ate
Whether hard-coded or referenced in this manner, the Display Name and H
Text will display in the property sheet through the Console to the end-user.
another example, here’s another screenshot showing some textual param
that are hard-coded and don’t take advantage of the EMT Framework:

Note that the “Type” column on the Parameters tab refers to Java types, so
must be careful to enter only valid Java types. For example, the correct ty
for Java stringsString —with a capital S—which is how you must enter the
type name.

5. After entering all the parameters you want to be available to this Flow, clic
on the Miscellaneous tab. Here you can enter the name of the icon, if any,
you want your connector flow to use in the Flow palette on the Console.

6. If you will be implementing a C++ connector, select “Generate C++
Connector” and enter the names of the C++ library and createMethod that
connector flow will use (the namesyourLibrary andyourMethod
display in the class and method fields when you select Generate C++
Connector; replace these names with the C++ library and method you’ll us
create the Flow.) The code generated by this tool will include the appropri
C++ wrapper calls.

� To register SimpleTranslator classes inside the .ini (see“Generating an .ini
File By Using Connector Generator” on page 102) you can enter the
Translator class (or classes) on this tab.
40 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

y

use
ard
te

be

text,
sense

this

,

7. Click on the Interfaces tab. Enter the type of event interfaces that will be
accepted as input to the flow or sent as output from this flow; you can onl
specify event interfaces (not individual events). This example from the
EBankJavaTarget connector shows the name of the Event interface
vtEBankConnectorModule.EBankConnectorEvents :

8. Once you’ve completed all the tabs of the Wizard with the relevant
information for the connector you’re building, you can save the entries by
selecting Save from the File menu. You’ll be prompted to enter a filename;
.gen as the filename extension. (You can open this file later using the Wiz
and change any settings; open it in a text file and do the same; or genera
individual files at the command line.)

9. Finally, generate the files by selecting Generate from the File menu. You’ll
prompted for a sub-directory into which to place the generated files.

Even if you don’t have all the other components in place—events, message
icons for the BeanInfo—you can still generate these Java elements and get a
of how the process works and what the code looks like.

Note that one difference between writing your own code manually and using
tool is that the tool generates two class files rather than one for the Flow
implementation: a Base class and the flow that extends the Base. Essentially
though, the code for the flow is the same.
41

ed
tor

s or

(if

the
the
Using the Connector Generator Tool and the .gen File

A .gen file is a text file formatted in a specific way that contains information us
to generate the requisite interface, class, and other files for a specific connec
flow. You can create a .gen file manually, using a text editor by following the
guidelines below, or as a by-product when you use the Connector Generator
Wizard tool, as described earlier in“How to Use the Connector Generator Tool
(Wizard).” Once you have a .gen file, you use it as an input argument for the
Connector Generator (command-line) tool, as shown here, to generate all file
select files:

Specifically, a .gen file includes:

� The connector name and name to display in the Console

� The connector type (Source, Target, or SourceTarget)

� The Java package to which the connector will belong

� The names of the .dll and the library function to execute in the constructor
the connector contains a C++ flow)

� The property sheet names, types, and descriptions

� The filename of an icon to display in the Console, if any

� The list of translator classes that will be available in the processing tab in
Console for a source-target flow (if you implement transformer methods in
flow)

� The source and target interface list

Here are the first few lines of an example .gen file from the EBank sample:

classname EBankJavaSource

displayname
TextMessage.formatMessage(ebanklocale.EBankSourceConnecto
rMessages.JavaDisplayName)

kind source

package jebank

icon ebsource.gif
42 BusinessWare Connector Programming Guide

Creating Java Components for a Connector Flow

me
ide
y in
age

he

rce

l

d of

MT
sourceinterface nameofsource.eventinterface
sourceinterface vtEBankConnectorModule.EBankConnectorEvents

As you can see, this is a simple text file format that begins with an identifier na
as the first item on a line followed by a value. The entries in the text above prov
the classname for the flow (class EBankJavaSource); the name that will displa
the console (picked up from the EMT Framework); the name for the Java pack
(package jebank); identifies that this will be a source connector flow (kind
source); and identifies the icon that will be used (icon ebsource.gif). Also in t
file is a reference to the type of events that the flow will handle (using the
sourceinterface identifier).

A .gen file also contains listings for all the parameters defined in the EBankSou
class; parameter descriptions in the .gen file are in the format:

param type name "short description" "long description"

with the label “param” at the beginning of the line. For example, this flow will
have a String parameter named “iorFile” that will get its short description labe
from the locale bundle’s IORShort variable and its long description from the
IORLong variable.

param String iorFile
TextMessage.formatMessage(ebanklocale.CommonEBankConnecto
rMessages.IORShort)
TextMessage.formatMessage(ebanklocale.CommonEBankConnecto
rMessages.IORLong)

...

The reference to the locale bundle from which all the text derives is at the en
the .gen file, as follows:

bundle vtEBankLocale3

Here’s another example .gen file, however, one that doesn’t implement the E
Framework; the comments (#) describe what’s going on in this listing:

parameter descriptions format:

name of the connector class

classname javaSampleS

name to be displayed in the gui

displayname "sampleS"

kind of connector (source, target, or sourcetarget)

kind source

java package this connector belongs to

package sampleS

icon for display in the gui

icon ebsource.gif
43

parameter descriptions format:

param type name "short description" "long description"

param String firstName "First Name" "customer name"

translator name.of.translator.class

translator SimpleTranslatorInterface

sourceinterface nameofsource.eventinterface
sourceinterface SimpleTranslatorInterface
44 BusinessWare Connector Programming Guide

5
 5WRITING JAVA CONNECTORS
as
lysts,

ime.
e

hich
rting
or

e

ic
, the

tal
a
ow

t

The flow’s def, rep, and BeanInfo work together to provide access to the flow
a visual component (via the Console) so that end-users, such as business ana
can set parameters and configure the specifics of the implementation at runt
It’s the flow itself that does all the work of a connector, however, and that’s th
subject of this chapter.

The code you write must make calls to the external API and process events, w
means that you should have an understanding of the external API before sta
and that you’ve given some thought to how you will specify the events in IDL
ODL; see“Defining Event Interfaces”for details.

If the flow you’re writing will participate in transactions, you must also write th
code for the transaction resource; see“Writing a Transaction Resource” on
page 75for details. Topics in this chapter include:

� Introduction to Java Connector Flows

� Writing Code for a Java Connector

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sample.

INTRODUCTION TO JAVA CONNECTOR FLOWS

All Java connector flows (source, target, and source-target) inherit some bas
behavior (characteristics) from the BaseConnector class. Generally speaking
common activities from a high level include starting the connector; interacting
with the external system; and stopping the connector.

From a lower level, common functions include initializing the connector,
retrieving configuration information from the repository, obtaining environmen
information (from the Flow Env), and obtaining (and subsequently releasing)
connection to the external system. Source and target connectors diverge in h
they process events (receive or send) and whether they can initiate a commi
(source connector flows should initiate).
45

.

ckage
nk

.*,
the
This chapter guides you through the process of writing the Java code for a
connector to accomplish all these tasks, highlighting some of the differences
between source and target connector flows that affect programming choices

WRITING CODE FOR A JAVA CONNECTOR

If the external or third-party API for which you’re creating the flow has been
implemented in Java, you will implement the Flow in Java.

Your code should start with the package name; use the same name as the pa
for the Def, Rep, and BeanInfo. Here’s the top portion of the code from the EBa
Java source flow:

package jebank;

import com.vitria.fc.flow.*;
import com.vitria.fc.meta.*;
import com.vitria.fc.object.*;
import com.vitria.jct.JctLib;
import com.vitria.fc.io.*;
import com.vitria.fc.diag.*;
import com.vitria.connectors.common.BaseConnector;

import java.net.*;
import java.io.*;

import EBankAPI.*;
import vtEBankConnectorModule.*;
import ebanklocale.*;
import com.vitria.msg.ConnectorMessages;
...

In the sample above, the imports for EBankAPI.*, vtEBankConnectorModule
and ebanklocale.* are specific to the EBank connector, but all other imports at
top of the file are standard for any connector. Additionally, for a transactional
flow, you would also import the ConnUtil class:

import com.vitria.connectors.common.ConnUtil;

After the imports, the code for any type of flow starts by extending the
BaseConnector class from com.vitria.connectors.common.BaseConnector:

...
public class EBankJavaSource extends BaseConnector

implements Runnable {
private EBankConnection connection_;

...
46 BusinessWare Connector Programming Guide

Writing Java Connectors

esn’t

ace

n

ef,
not

it
As you can see, the code in the example above also implements Java’s
Runnable interface as a simple way of implementing its thread logic. Here’s
another example, from the target (rather than a source) connector; this one do
implement Java threads, as a point of comparison:

public class EBankJavaTarget extends BaseConnector
implements EBankConnectorEvents {

...

In this example, the EBankJavaTarget flow class implements the event interf
from the third-party system; you’ll see more about this later in this chapter.

A final note about the code sample onpage 46: The private EBankConnection
object (variable) will be used to connect to the EBank server at runtime.
Depending upon the external system, you may or may not need to setup a
connection within which to interact with the external system. For example,
database and message-queuing systems typically require a connection withi
which to handle transactions; on the other hand, file systems don’t.

For this specific example, the connection object is used later in the code, in“Start
and Stop Processing in the Flow” on page 48.

INITIALIZE THE CONNECTOR FLOW

Next, you must provide code to initialize the Flow; this will be called when the
flow is created. As shown in the example, the init() method gets passed the D
which contains the configurable parameters, and a Flow Env; the Flow Env is
used directly elsewhere in the code you write, but you must pass it in the
initialization method so that the flow can obtain the environmental information
needs (pointer to the transaction resource, for example). The standard fully-
qualified signature for the init() method is as follows:

init(com.vitria.connectors.common.ConnectorBaseDef, com.vitria.fc.flow.FlowEnv)

Here’s the relevant code fromEBank Connector Sample:

...
public void init(EBankJavaSourceDef d, FlowEnv env){
// STANDARD call super.init

super.init(d, env);

iorFile_ = d.getIorFile();
account_ = d.getAccount();
pollRate_ = d.getPollRate();

...
47

(At

ed,

p
user
, for

n to

r-

():
As shown in the listing above, within the init() method you must first call
super.init(def, env) and next obtain the configuration parameters from the Def.
runtime, this block serves to bring in either the default parameters or the
parameters saved to the repository by an end-user.) With the basic flow initializ
the next task the code must handle is starting and stopping the flow from
processing events.

START AND STOP PROCESSING IN THE FLOW

Once the flow is initialized, you must next provide methods that start and sto
event processing in the flow; these methods will be invoked whenever an end-
starts, pauses, or stops a connection model from the BusinessWare Console
example.

The first task is to override the void startEvents() method (inherited from the
BaseConnector class); this gets called when the model is started:

...
public void startEvents(){

if (logLevel_ >= DiagLogger.ERROR){
ConnectorMessages.logStarting(logger_, EBankSourceConnectorMessages.baseid,

name_);
}

try {
connection_ = new EBankConnection(new File(iorFile_));

}
..

The code above will attempt to connect to the EBank server. If the connectio
the banking server is unsuccessful, aDiagError is thrown; the Flow Manager
catches theDiagError and shuts down the connection model (not all the erro
handling code is shown; see theEBank Connector Samplefor complete code
listings.)

Frequent re-connections (and disconnections) to an external system are
inefficient, which is why the standard approach to connecting to the external
system in any flow should be within thestartEvents method (as shown in the
code above) and disconnection should be withinstopEvents (stopEvents is
covered onpage 49).

After connecting to the external system, you must next call super.startEvents

super.startEvents();
running_ = true;
thread_ = new Thread(this);
thread_.start();
48 BusinessWare Connector Programming Guide

Writing Java Connectors

u

ing

rty
t’s

the
k of
ssed
if (logLevel_ >= DiagLogger.ERROR){
ConnectorMessages.logStarted(logger_,EBankSourceConnectorMessages.baseid,

name_);
}

}

...

The next block of code overridesvoid stopEvents() ; this method will get
called when the model is stopped. After checking for errors, the first thing yo
must do inside stopEvents method is to callsuper.stopEvents —you must
do this before actually disconnecting. Here’s the sample code:

...
public void stopEvents(){

if (logLevel_ >= DiagLogger.ERROR){
ConnectorMessages.logStopping(logger_, EBankSourceConnectorMessages.baseid,

name_);
}

// STANDARD call stopEvents before doing stop work
super.stopEvents();

if (thread_ != null){
running_ = false;
thread_.interrupt(); // in case we are sleeping

}

if (logLevel_ >= DiagLogger.ERROR){
ConnectorMessages.logStopped(logger_, EBankSourceConnectorMessages.baseid,

name_);
}

}
...

You must also stop the polling thread (for source connector flows that are poll
a data source, as in this example). If the flow uses a connection, the code in
stopEvents would include the necessary calls to disconnect from the third-pa
application (although in this specific example, there is no disconnect call; tha
handled automatically when the process terminates.)

After taking care of initialization and providing mechanisms to start and stop
connector, the next major task is providing the code that actually does the wor
processing the events that ultimately should move through the flow, as discu
in the next section.
49

d
et
-
od,
all

s
ata
w.

their

n

d to
ts at

urce-

o a

The
CODE THAT SENDS AND RECEIVES EVENTS

You must implement code in your flow to send or receive events (or both) an
move them to subsequent flows in the model. Source flows send events; targ
flows receive events; source-target flows can do both. For target (and source
target) flows, events are typically processed in the flow’s own doPush() meth
while source (and source-target flows) do this work typically in a thread and c
super.doPush to pass events to subsequent flows.

The specific implementations vary depending on how the event information i
available, specifically, whether event information is accessed from the metad
system or from marshaling stubs generated from IDL files, as discussed belo

SeeChapter 7, “Defining Event Interfaces,”andBusinessWare Programming
Guidefor additional information about events.

Event Handling (Target or Source-Target Flow Only)

Target and source-target flows receive events and typically process them in
own doPush() method. The method signature for a target flow’s doPush() is:

public void doPush(EventBody evt){...

An EventBody is the structure (both Java and C++) that represents events i
BusinessWare; anEventBody contains information, such as definition of its
event interface, event name, and other specifications and parameters, neede
construct or deconstruct an event. You can construct or deconstruct the even
runtime in several way, including the approach shown in the sample code for
EBank Connector Sample, discussed briefly in this section.

The standard approach for handling events in target connector flows (and so
targets) is to override doPush(). Within this method you’ll put your event
processing code specific to your application needs, such as adding records t
target system or updating database tables.

...
public void doPush(EventBody evt){
if (!evt.tryDispatch(this) && logLevel_ >= DiagLogger.WARNING){

EBankTargetConnectorMessages.logUnknownEvent(logger_, evt.getEventSpec());
}

}

A target flow decomposes the EventBody that is passed to it in the doPush().
EBankTarget connector flow is interested in (has subscribed to) two different
types of event only—withdraw , deposit — it will drop any events of type
balance (but will write a message to the log file).
50 BusinessWare Connector Programming Guide

Writing Java Connectors

nd

data

he
on it
e.

re

ing
ce
In this example, the EBankTarget connector flow must take deposit events a
withdrawal events and push them through a connection to the EBank server,
which means they must take the incoming event and construct it as the type of
that EBank server can accept.

public void balance(int account, double balance){
if (logLevel_ >= DiagLogger.WARNING){

EBankTargetConnectorMessages.logBalanceNotSupported(logger_);
}

}
public void withdraw(int account, double amount){
...

connection_.withdraw(account, amount);
}

...
}

public void deposit(int account, double amount){
...
connection_.deposit(account, amount);
}
..

The code sample above usestryDispatch() method; tryDispatch looks at the
event, and if this flow implements the appropriate event interface, it will call t
method that corresponds to the event interface. EventBody gets the informati
needs about the event from its metadata, when it does the tryDispatch routin

Vitria recommends using this approach when stubs are available. To use this
technique, your code must also implement the interface in which the events a
defined. In this example, theEBankConnector.idl was used (with the
jstubgen tool; seeBusinessWare Programming Referencefor details) to
generate several Java class and helper files (for marshalling and unmarshall
objects of the type specified in the IDL), which ultimately produced an interfa
that’s implemented in this EBankJavaTarget, as shown here:

public class EBankJavaTarget extends BaseConnector implements EBankConnectorEvents
{

Here’s the complete text ofEBankConnector.idl , which defines the events:

#ifndef _ebank_events_idl
#define _ebank_events_idl 1

// STANDARD Connector modules begin with vt
module vtEBankConnectorModule {

// STANDARD interface names capitilize each word
interface EBankConnectorEvents {

// STANDARD event names lower case first word, upper case others
event void balance(in long account, in double balance);
event void withdraw(in long account, in double amount);
event void deposit(in long account, in double amount);

};
};
51

ular

the

at
f the

ce
fied

ting

ject
#endif

SeeChapter 7, “Defining Event Interfaces”or theBusinessWare Programming
Guidefor additional information about IDL, ODL, and BusinessWare events.

Event Handling (Source or Source-Target Flow)

For a source flow, events are typically handled by constructing them from
metadata and data (when new data is found in the external system during reg
polling), and pushing them to the next flows by calling the
super.doPush(com.vitria.fc.flow.EventBody) method. The event gets sent to
source connector’s target list.

You must also wrap the doPush() calls inside a mutex (semaphore or lock th
ensures mutually exclusive use); this transactional mutex ensures that none o
following occur at the same time:

� push

� commit

� abort

� start

� stop

This example steps through the source connector flow fromEBank Connector
Sampleto highlight one approach to creating events. In the example, the sour
connector flow monitors EBank server for a change to the balance of a speci
account and pushes the event when there’s a change.

The listing only details the specific event-related code; the key tasks are crea
theEventBody and then callingdoPush() to send the event to the connector’s
target list. Unlike the EBankTarget connector flow, the source connector flow
does not implement the event interfaces as compiled stubs. This uses an ob
calledEventDef to hold the definition of the balance event, which it obtains
with thegetMetaObject() method below.

...
import com.vitria.jct.JctLib;
..
import com.vitria.connectors.common.BaseConnector;
...
..

private EventDef balanceDef_; // eventdef used to create our balance event
...

//Initialization code
/* As a minor optimization, we can cache the event def used to publish

our balance events.
52 BusinessWare Connector Programming Guide

Writing Java Connectors

lled

sk is
e

bout
*/
balanceDef_ = (EventDef)

EBankConnectorEventsHelper.getMetaObject().findDef("balance");
}

// startEvents(), stopEvents(), disconnect, other general routines not shown
...

This is the main polling loop (executed by the the thread). EBank Server is po
continuously for the balance; when the balance changes (it knows when it
compares thenewBalance to lastBalance), it calls sendNewBalance,
passing the balance as a parameter.

public void run(){
while (running_){

double newBalance = lastBalance_;
// error and logging code
...

// get the balance
newBalance = connection_.balance(account_);

}
// error-handling code

}
}

// looks for a new balance and sends the event; does nothing if no balance change
if (newBalance != lastBalance_){

sendNewBalance(newBalance);
}
else {

// error and logging code, checking the pollrate, threads, not shown here
...

Here’s the code for the sendNewBalance() method that gets called; the key ta
to create a new event for the balance EventBody and push it along. Within th
sendNewBalance method, the event is constructed from the array of the
parameters that comprise it. The EventDef provides information (metadata) a
how these parameters should be used (bycreateEventBody) to construct the
EventBody from the parameters.

...
/* Create a new event for the new balance, and send to the next flow */

private void sendNewBalance(double newBalance){
if (logLevel_ >= DiagLogger.VERBOSE){

EBankSourceConnectorMessages.logNewBalance(logger_, newBalance);
}

//new balance gets processed in here; create event parameters for the event here
//put account (int) first, followed by the balance (dbl)
Object [] parameters = new Object[2];

parameters[0] = new Integer(account_);
parameters[1] = new Double(newBalance);

// create the event body and push it along
EventBody out = JctLib.createEventBody(balanceDef_, parameters);

if (logLevel_ >= DiagLogger.VERBOSE){
EBankSourceConnectorMessages.logPushing(logger_);

}

53

end it
ust

s or
e

the

ean
lace

this
n
m the
. If

ther
// STANDARD make all stateful changes before calling doPush or commit
lastBalance_ = newBalance;

...

Once the EventBody contains the appropriate data, the super.doPush() can s
on its way. As mentioned earlier in this section, a true source connector flow m
do this within the context of the mutex. Only true sources—not source-target
targets—should acquire this mutex. Here’s the code showing the mutex in th
EBank Connector Sample:

...
Object transmutex = service_.waitForCommit();
synchronized (transmutex){
// STANDARD call super.doPush to push events to the next flow
super.doPush(out);
}
// commitAfter_ for source connector flows goes here
...

Source connector flows have one final task to perform—checking the value of
commitAfter_status flag, as discussed in the next section.

CHECKING VALUE OF COMMIT AFTER_

Source connector flows must always check the value of the commitAfter_ bool
at the conclusion of the code, as shown in the listing. The commit must take p
outside the transmutex lock (shown above):

...
if (commitAfter_){

if (logLevel_ >= DiagLogger.VERBOSE){
EBankSourceConnectorMessages.logCommitting(logger_);

}

service_.commit();
}

}
}

As mentioned elsewhere in this guide, source connector flows must perform
check because of the processing lifecycle within a connection model: after a
event has been pushed through the entire connection model, the doPush (fro
source connector flow that initated the process) is returned to the source flow
the commitAfter_ boolean has been set to “true,” (by a business analyst or o
end-user), then the source connector flows callscommit() on the transaction
service.

See“Java API Summary” on page 1for a recap of methods used.
54 BusinessWare Connector Programming Guide

6
 6WRITING C++ CONNECTORS
the
, and

ing

es

nd

ific,

o
for

ally

s, so

of
d

Developers can write all the elements of the connector code in Java, not only
visual components that enable access through the Console—the Def, the Rep
BeanInfo—but the Flow code itself. However, if the external system provides
only C/C++ APIs, you’ll need to write the flow in C++. You still create the def,
rep, and BeanInfo classes in Java, but you will tie the flow to these entities us
a wrapper class provided by Vitria, that allows C++ flows and Java flows to
interact within the same connection model. This chapter tells you how; it provid
information about implementing a connector flow in C++; topics include:

� Introduction to C++ Connector Flows and Flowbridge

� Implementing a Flow in C++

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Samplethat ships with BusinessWare.

INTRODUCTION TO C++ CONNECTOR FLOWS AND FLOWBRIDGE

Flowbridge is a complete Java package (com.vitria.connectors.flowbridge) a
C++ library (vtFlowBridge) that provide several utility classes for working with
C++ connector flows in the context of BusinessWare. Because much of the
runtime implementation of BusinessWare, including the Console, is Java spec
when working with C++ flows, you’ll need a way to let the flow objects you
expose and control in the Console communicate with the flow itself. You’ll als
need a way to log messages and the like. FlowBridge provides mechanisms
communicating across the Java-C++ boundary.

One of the FlowBridge facilities is the C++ wrapper, a Java class that essenti
functions as the representative for the C++ flow (in the context of a runing
connection model). The wrapper (CPPFlow) extends the BaseConnector clas
it picks up standard flow properties, such as a list of flows to which it should
deliver events.

Internally, the C++ wrapper implements a C++ wrapper flow def with the help
a C++ wrapper flow rep. The wrapper lets C++ flows work with the Java-base
components of BusinessWare, as discussed in the next section.
55

vel
om

ss
)

n its

he
ent,

zes
JNI

its
the
of
Java

ents
the

lls to
ork

:

to
HOW THE C++ WRAPPER WORKS

In a typical Java connection model, calls to doPush(), move synchronously
through the connection model from flow to flow. Behind the scenes, a lower-le
mechanism (not exposed to developers), does the work of pushing events fr
flow to flow; the push returns in the reverse order, back to the source flow.

When a C++ flow is included in a connection model, the same general proce
occurs, but a Java wrapper class (com.vitria.connectors.flowbridge.CPPFlow
intercepts the push on behalf of the C++ flow, and negotiates all processing o
behalf.

The CPPFlow acts as a Java representative for the C++ flow in the model. T
CPPFlow intercepts any pushes to a C++ flow in the model; it processes the ev
sending it the next flow in the model if appropriate.

Behind the scenes, when CPPFlow receives an event (in doPush()), it seriali
the event into raw data which it then sends across the Java/C++ barrier using
(Java Native Interface) to the actual C++ flow.

When the data is received in C++, the event is deserialized (inflated) back into
regular state as an event, to be processed by the flow; push() gets called on
C++ flow with the event. If this push() call causes the C++ flow to push events
its own (if it is a source-target), these events are passed from C++ back to the
wrapper using CORBA, where the events are temporarily stored in an event
buffer.

After the JNI call has returned, the CPPFlow wrapper checks to see if any ev
are in the event buffer; if so, it pushes these events to the next flow or flows in
model.

Calls to the logger from within the C++ flow must also make use of this
mechanism. These are all routed through a dispatcher that makes CORBA ca
cross the C++/Java barrier. The actual calls are made inside the Java framew
by the Java wrapper code.

IMPLEMENTING A FLOW IN C++

Creating a C++ flow and using the wrapper class involves the following steps

� Create the Java components. In the Rep (EBankCPPSourceRep.java or
EBankCPPTargetRep.java, for example), make a call to the C++ wrapper
create the flow, as discussed in“Call the Wrapper in the Java Code for the
Rep.”
56 BusinessWare Connector Programming Guide

Writing C++ Connectors

s
d

w,

25
e
the
of
� Write the C++ creation method using a standard CreateFlow method
signature.

� Write the C++ code for the flow. As with a Java flow, the C++ flow must
implement initialization, startup, shutdown, and other standard routines, a
well as do the work of the flow itself; that is, either send or receive specifie
events.

These steps are discussed in the next several sub-sections.

CREATE THE JAVA COMPONENTS

Writing the Java components for a C++ flow is the same as writing a Java flo
with the exception of how the flow gets created by the Rep (as discussed in“Call
the Wrapper in the Java Code for the Rep.”) For example, here’s the Java Def for
the source connector:

package cppebank;

import com.vitria.connectors.common.*;

public interface EBankCPPSourceDef extends
ConnectorSourceDef {
public String getIorFile();
public void setIorFile(String iorFile);
public int getAccount();
public void setAccount(int account);
public int getPollRate();
public void setPollRate(int pollRate);

}
...

See“Creating Java Components for a Connector Flow” in Chapter 4 on page
for additional information. One administrative detail, however: be sure to nam
all file names related to a C++ consistently, using the naming conventions for
Java file names. For example, the filenames associated with the C++ version
EBank source connector flow are:

� EBankCPPSourceDef.java

� EBankCPPSourceRep.java

� EBankCPPSourceBeanInfo.java

� EBankCPPSource.hxx

� EBankCPPSource.cxx
57

the
he

ate

te
dard

oth

the
on
CALL THE WRAPPER IN THE JAVA CODE FOR THE REP

The Java Rep for the C++ flow must make the call to create the flow through
C++ wrapper. Here’s an excerpt from the EBankCPPSourceRep.java (from t
EBank Connector Sample) that shows how to bracket calls to create the flow
source with the CPPFlow:

...
public FlowSource createFlowSource(FlowEnv env){

CPPFlow cppFlow = new CPPFlow(this, env);
cppFlow.setSharedLibName("vtEBank");
cppFlow.setMethodName("CreateEBankSource");
String [] params = new String[3];
params[0] = "" + iorFile_;
params[1] = "" + account_;
params[2] = "" + pollRate_;
cppFlow.setParams(params);
cppFlow.init(env);
return cppFlow;

}

The parameters are put into a string array, which then gets passed to the cre
method.

WRITE A C++ FUNCTION THAT GETS CALLED BY THE WRAPPER

Write a create function using the standard signature (shown below); this crea
method is used to wrap the C++ flow inside the Java wrapper. Here’s the stan
signature:

#ifdef _WIN32
int __declspec(dllexport) CreateFlowNameHere(const char** params,int iNumParams)

#else
int CreateFlowNameHere(const char** params,int iNumParams)

#endif

The example C++ file listed below contains the methods used to instantiate b
the source and target connectors for the EBank sample. The
CreateEBankSource function shows standard method signature to use for
methods that create C++ flows.

Note that the parameters are being passed as string values and converted to
appropriate types later in the code. You’ll have to do this for the create functi
for your flow as well, because the parameters are always passed in as string
values.
58 BusinessWare Connector Programming Guide

Writing C++ Connectors

eate
At runtime, both the EBankCPPSourceRep and EBankCPPTargetRep will cr
CPPFlow objects that will call the create methods using JNI (Java native
interface).

/* This CreateFlow.cxx file contains the methods used to instantiate the source
and target flows. The Java Reps (generated by the connector wizard) create

CPPFlow objects that call these create methods using JNI */

#include "IOP/vtiioporb.hxx"
#include "bw/flow.hxx"

#include "EBankSource.hxx"
#include "EBankTarget.hxx"

#ifdef __cplusplus
extern "C" {
#endif

/* This is the standard method signature to use for methods that create C++ flows.
Parameters are always passed to us as string values, so you will have to convert
as necessary. */

#ifdef _WIN32
int __declspec(dllexport) CreateEBankSource(const char** params,int iNumParams)

#else
int CreateEBankSource(const char** params,int iNumParams)

#endif
{

const char * ior;
int account;
int pollRate;

// convert the string parameters to their appropriate types
ior = params[0];
sscanf(params[1], "%d", &account);
sscanf(params[2], "%d", &pollRate);

// instantiate the source flow
EBankSource * flow = new EBankSource(ior, account, pollRate);

return (int)(vtFlow::Flow*)flow;

}

#ifdef _WIN32
int __declspec(dllexport) CreateEBankTarget(const char** params,int iNumParams)

#else
int CreateEBankTarget(const char** params,int iNumParams)

#endif
{

EBankTarget * flow = new EBankTarget(params[0]);

return (int)(vtFlow::Flow*)flow;
}

#ifdef __cplusplus
}
#endif
59

as

de
WRITE THE CODE FOR THE C++ FLOW

The connector flow must provide routines to enable initialization, starting and
stopping the flow, and event processing. A C++ flow is typically implemented
source file and a header file that contains several function signatures. (ForEBank
Connector Samplesource connector flow, these are EBankSource.cxx and
EBankSource.hxx, respectively.)

Within the C++ code for your flow, you must extend thevtFlow::FlowImpl
class. Here’s a sample code listing from EBankSource.hxx:

#ifndef EBankSource_h
#define EBankSource_h 1

#include "EBankConnection.hxx"

// STANDARD: Extend vtFlow::FlowImpl
class EBankSource : public vtFlow::FlowImpl {
private:

char iorFileName_[1024]; // the name of the file containing the ior
int account_; // the account we are polling
int pollRate_; // the poll rate in milliseconds
EBankConnection * connection_;
int running_; // used for start/stop of our thread
double lastBalance_; // what is the last balance we have received?

public:
/* Constructor. Takes the ior filename, account, and poll rate. */
EBankSource(const char *, int, int);

...

Next, you must override void startEvents(_Ix_Env& _env):

/* In our start code, we connect to the EBank Server, and start
our polling thread. If there is a problem, we set an exception.
*/

void EBankSource::startEvents(_Ix_Env& _env) {
VTDiagnostic* diag;

diag = ConnectorMessages::createStarting(EBankSourceConnectorMessages::baseid,
"EBankSource");
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

Make any necessary calls to connect to the third-party application. Include co
to prevent startup if there’s an error (note the_env.exception(err) in the code
below).

// try connecting
if (!connection_->connect()){

// could not connect!
diag =

CommonEBankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid);

flowbridge_logmessage(VTTRACE_ERROR, this, diag);
60 BusinessWare Connector Programming Guide

Writing C++ Connectors

call

ing
// set exception so we don't start up
VTDiagError * err = VTDiagError::create(__FILE__, __LINE__,

CommonEBankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid));

_env.exception(err);

return;
}

After connecting (or creating a connection to) the external system, you must
FlowImpl::startEvents(_env); if you need to start a thread for polling (as in a
source flow), you can do it in this function:

// STANDARD threads that push events must be started after FlowImpl::startEvents
running_ = 1;

/* This call creates a thread that will call the pollAccount method
with this flow as an argument. */

VTThreCreate(0, EBankSource::pollAccount, this);

diag = ConnectorMessages::createStarted(EBankSourceConnectorMessages::baseid,
"EBankSource");
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

}
...

Your flow should also provide the implementation for stopEvents(_Ix_Env&
_env), as shown in this listing. Within this function, you should also stop any
threads, disconnect from the external system, and handle any errors:

...
void EBankSource::stopEvents(_Ix_Env& _env){

VTDiagnostic* diag;

diag = ConnectorMessages::createStopping(EBankSourceConnectorMessages::baseid,
"EBankSource");
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

Before disconnecting, you must call FlowImpl::stopEvents(_env) before stopp
processing:

// STANDARD call FlowImpl::stopEvents before stop work is done
FlowImpl::stopEvents(_env);

running_ = 0;

diag = ConnectorMessages::createStopped(EBankSourceConnectorMessages::baseid,
"EBankSource");
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

}

61

he
so

dy
e

ubs
vent

gets
Calls to disconnect from the third-party application would be in this section of t
code as well (in the example code shown above, disconnection is automatic,
there’s no code for it).

Code that Sends and Receives Events

For a target (or source-target) flow, you should override push(vtFlow::EventBo
* event, _Ix_Env& env). This gets called when your flow receives an event; th
EventBody is passed into the flow through this entry point. As shown in the
listing, event processing code also goes within this function.

To handle the events, your C++ flow should use the tryDispatch method (if st
are present) which looks at the event and calls the appropriate method (if the e
interfaces have been implemented); in this example, event interfaces are for
balance, withdraw, or deposit.

If a balance event is being pushed, it’s not processed, but an error message
logged. The error handling is passed through calls to FlowBridge; see“C++ API
Summary” on page 5for function listing.

void EBankTarget::push(vtFlow::EventBody * event, _Ix_Env& env){
if (!event->tryDispatch(this)){

VTDiagnostic * diag =
EBankTargetConnectorMessages::createUnknownEvent(EBankTargetConnectorMessages::b
aseid, event->getEventSpec());

flowbridge_logmessage(VTTRACE_ERROR, this, diag);
}

}
// This gets called by tryDispatch
void EBankTarget::balance(CORBA::Long account, CORBA::Double amount, _Ix_Env&

env){
VTDiagnostic * diag =
EBankTargetConnectorMessages::createBalanceNotSupported(EBankTargetConnectorMess
ages::baseid);
flowbridge_logmessage(VTTRACE_WARNING, this, diag);

}
// This gets called by tryDispatch
void EBankTarget::deposit(CORBA::Long account, CORBA::Double amount, _Ix_Env&

env){
VTDiagnostic * diag =
EBankTargetConnectorMessages::createDepositing(EBankTargetConnectorMessages::bas
eid, account, amount);
flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

connection_->deposit(account, amount);
}
// This gets called by tryDispatch
void EBankTarget::withdraw(CORBA::Long account, CORBA::Double amount, _Ix_Env&

env){
VTDiagnostic * diag =
EBankTargetConnectorMessages::createWithdrawing(EBankTargetConnectorMessages::ba
seid, account, amount);
flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

connection_->withdraw(account, amount);
}

62 BusinessWare Connector Programming Guide

Writing C++ Connectors

Body
(The parsing of event data and metadata to construct or deconstruct an Event
is conceptually the same process as discussed in“Code that Sends and Receives
Events” in Chapter 5 on page 50.)

If your flow is a Source or SourceTarget flow, you must make calls to
FlowImpl::push(vtFlow::EventBody *, _Ix_Env& env) to push events on to the
next flow (or flows). Here’s a sample code listing:

...
// get the balance

double newBalance = connection_->balance(account_);

// If we have a new balance, publish an event!
if (newBalance != lastBalance_){

lastBalance_ = newBalance;

diag =
EBankSourceConnectorMessages::createNewBalance(EBankSourceConnectorMessages::bas
eid, newBalance);

flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

// construct the event body
vtCORBA::Double corbaDouble = (vtCORBA::Double) newBalance;
vtCORBA::Long corbaLong = (vtCORBA::Long) account_;
OcsStubImpl::ParamValue params[3]; // leave 0 open
params[1].addr = &corbaLong;
params[2].addr = &corbaDouble;

OcsInterfaceHelperElem * op =
vtEBankConnectorModule_EBankConnectorEvents_getHelper()->elems()[0];

vtFlow::EventBody * event = vtChanFlow::ChanFlowLib::createEventBody(op,
params);

// push it
diag =

EBankSourceConnectorMessages::createPushing(EBankSourceConnectorMessages::baseid
);

flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);

_Ix_Env env;
FlowImpl::push(event, env);

}
else {

diag =
EBankSourceConnectorMessages::createNoNewBalance(EBankSourceConnectorMessages::b
aseid);

flowbridge_logmessage(VTTRACE_VERBOSE, this, diag);
}

}

See“C++ API Summary” on page 5for more information about FlowBridge. See
BusinessWare Programming GuideandBusinessWare Programming Reference
for additional information.
63

64 BusinessWare Connector Programming Guide

7
 7DEFINING EVENT INTERFACES
are

er
that

ent,

ype
ctor

s

y

s this
e
s

This chapter provides an introduction to BusinessWare events and how they
defined (using IDL) and stored in the repository as metadata. Topics in this
chapter include:

� Overview of Events and Metadata

� Registering and Using Metadata

� Programming Techniques for Working with Events

OVERVIEW OF EVENTS AND METADATA

The common purpose of any BusinessWare connector flow is typically to eith
send or receive an “event”—a structure that contains both data and metadata
is used in the context of an application. For example, theEBank Connector
Samplehandles three different types of events: a withdraw event, a deposit ev
and a balance event.

Metadatais data about data; it provides information about data itself, such as t
of data, name, length, and so forth. In the context of BusinessWare and conne
flows, metadata is data that provides information about an event, including it
name, data type, and parameters.

BusinessWare uses the same hierarchy of metadata as is used by CORBA
(Common Object Request Broker Architecture); the BusinessWare repositor
provides a hierarchical namespace for handling metadata. BusinessWare
maintains a dictionary of all event metadata in the namespace; the system use
dictionary at runtime to determine system behavior as events flow through th
system. (The registry holds metadata about all other BusinessWare objects a
well, in addition to events. SeeBusinessWare Metadata Guidefor additional
information.)
65

tom

es;
as

lly

up;

ject-
el.

the

t” to

and

stem
d
tor

s
file

own
Developers must define the events that will be sent from or received by a cus
connector. The structure of any event is exposed to other objects through an
interface. Depending on the specific characteristics of the external system,
developers can use IDL (interface definition language) to define event interfac
ODL (object definition language) to define data or object interfaces; or both,
discussed in the next section.

OVERVIEW OF IDL AND ODL

In BusinessWare, IDL is used to define event interfaces, while ODL is typica
used to define data interfaces.

Both IDL and ODL are vendor-neutral definition languages. IDL is a CORBA-
compliant description language promulgated by the Object Management Gro
ODL is a specification language (from the Object Data Management Group,
formerly the Object Database Management Group). ODL is used to define ob
oriented data, specifically, object types that conform to the ODMG Object Mod

Both IDL and ODL aredescriptivelanguages; an IDL (or ODL) file defines an
interface and fully specifies the parameters of each operation provided through
interface.

Vitria has extended these description languages by adding the keyword “even
model the type of data specific to BusinessWare. (As an aside, you can use
BusinessWare strictly as a CORBA ORB—bypassing the publish-subscribe
channel architecture—by not defining events.)

CREATING DEFINITION FILES THAT DESCRIBE METADATA

As mentioned previously, developers typically will use IDL to define event
interfaces. To specify data interfaces that represent an object in an external sy
(or define a data interface for a persistent data store, such as an object-base
database or collections), you can use ODL. In most cases, however, connec
developers will be creating IDL files.

An IDL file is a text file formatted in a particular way that uses specific keyword
to define a containment structure of objects that comprise metadata. An IDL
includes a definition of a module name that contains one or more interface
definitions; each interface also contains one or more event definitions, as sh
in this sample:

module vtFileConnectorEvents {
typedef sequence <string> stringArray;
typedef sequence <octet> octetArray;
66 BusinessWare Connector Programming Guide

Defining Event Interfaces

es

).

letes,
L

te
interface dataFileEventInterface {
event void dataFileEvent(in octetArray data, in string fileName);

};

interface asciiFileEventInterface {
event void asciiFileEvent(in stringArray data, in string fileName);

};

interface fileNotificationEventInterface {
event void fileChanged(in string fileName);
event void fileDeleted(in string fileName);
event void fileCreated(in string fileName);

};
...

For an external system that has many objects or events, you can nest modul
within each other, as shown in the listing onpage 68; each module defines a
separate object.

These identifiers—module, interface, event—combine to provide a fully-
qualified reference to an event in the hierarchical namespace (the repository

If objects in the external system are modeled for create, read, update and de
you can use ODL to define data interfaces (rather than IDL). Like IDL, an OD
file can contain modules, interfaces, and events. Unlike IDL, ODL includes a
keywordpersistent that you can use as part of an interface definition. For
example, the the data interface forTABLE1 in the example below uses this
keyword:

interface TABLE1 : persistent {

In addition, ODL automatically generates certain events (in IDL, events must
always be specifically defined) when you ‘grind’ persistent interfaces (genera
stubs from ODL by running the ODL file through the BusinessWare pre-
compiler), specifically:

� add

� change

� delete

� addOrChange

� changeWithValue

� deleteWithValue

Here’s an excerpt of an ODL file:

module externalSystemConnectorEvents
{

67

(in

, as

or
not
ach

s. For
struct nameValueStruct {
string name;
any value;

};

typedef sequence <nameValueStruct> nvSeq;

interface externalSystemGenericEvents
{

event void ObjectChange(in string keyfield, in long objID, in nvSeq attrs);
event void ObjectAdd(in string keyfield, in long objID, in nvSeq attrs);
event void ObjectDelete(in string keyfield, in long objID);

};

module TABLE1_Module {

/* TABLE1 structs go here */

interface TABLE1 : persistent {
attribute string field1;
attribute double field2;
attribute double field3;
attribute string field4;

};

};

};
...

In this example, all the fields inTABLE1 are primitive types (in this case, strings
or doubles), but an external system may comprise many other types as well
addition to primitives).

To represent defined types in IDL and ODL, you can use C/C++ style structs
in the example above which shows the definition ofnameValueStruct for
storing name-value pairs; (a location for defining structs local to the module
TABLE1_Module is noted in the comments of the ODL sample above).

Naming Conventions and Guidelines

Although IDL and ODL are both case-sensitive, don’t use mixed upper-and-
lower-case names as an attempt to give uniqueness to your event, interface,
module names: Many operating systems, including Windows NT Server, are
case sensitive at the lowest levels. To avoid potential naming conflicts, make e
event name unique.

In addition, when defining IDL for events, connector developers should:

� Group related events into the same interface

� Reuse events and types whenever possible, rather than creating new one
example, use the standard events and types provided by Vitria found in
basicEvents.idl.
68 BusinessWare Connector Programming Guide

Defining Event Interfaces

ed
ate

es,
four

ou
CREATING STUB FILES

An IDL file provides the basis for creating Java or C++ stubs which can be us
by a flow at runtime to derive the metadata needed to create an event. To cre
the stubs, developers can use the utility programs (cstubgen andjstubgen),
which basically function as pre-compilers on the IDL to create various class fil
helper files, and other programming-language-specific source code (at least
files are usually generated.)

As discussed in“Event Handling (Target or Source-Target Flow Only)” on
page 50, you can implement the interface in your flow and use tryDispatch()
deconstruct the EventBody before pushing it onward.

SeeBusinessWare Programming GuideandBusinessWare Programming
Referencefor more information about cstubgen and jstubgen.

REGISTERING AND USING METADATA

Custom metadata is avaialable to the system after it has been imported and
registered with BusinessWare repository. To import and register metadata, y
can:

� create an .ini that includes a call toaddTypeToRegister method, passing
in the name of the IDL file

� use the importidl command (if the IDL or ODL has been generated
automatically, you must use this approach rather than using an .ini file).

SeeBusinessWare Programming Referencefor information about using
importidl. See“Creating the Initialization (.ini) File” on page 101for
additional information about creating and using .ini files.

Once the IDL (or ODL) metadata is loaded into BusinessWare it will become
available on the Console.
69

f

tor,

rted,
g

pes;
d
bles
erate

w

er

pes

data
L

PROVIDING AN IDL (OR ODL) GENERATOR WITH CUSTOM

CONNECTORS

Defining events using IDL or ODL for external systems that have hundreds o
objects is best done programmatically, by a generator tool that can query the
external system’s metadata and convert it to IDL or ODL automatically. As a
connector developer, you might want to provide such a tool with your connec
in which case you should think about the topics covered in this section.

Creating a User Interface Tool for the IDL/ODL Generator

If an external system contains a large amount of metadata that must be impo
you should create a user interface (UI) tool to simplify the process of selectin
subsets of metadata from among a potentially large number of objects.

For instance, an SAP system exposes over 200 BAPI objects and 400 IDOC ty
importing every object into BusinessWare would be inefficient if you only nee
to use a few of them. In cases like this, you can create a wizard-like UI that ena
business analysts to select the subset of metadata for which they want to gen
events.

Be sure to provide some sensible options: making end-users choose just a fe
items from an extensive list is just as cumbersome as making end-users list
hundreds of items. In short, connector developers should create a simple us
interface tool to let end-users simply and easily choose components from the
external system that should be input to the IDL/ODL generator.

Mapping External Datatypes to IDL (or ODL)

Data types in an external system do not always neatly map to the primitive ty
natively supported in IDL or ODL; for example, DateTime is a native RDBMS
data type, but not a native IDL type.

Connector developers should provide a mapping from the external system’s
type to an IDL or ODL data type (in the case of the example, creating an IDL/OD
struct to represent the DateTime format).
70 BusinessWare Connector Programming Guide

Defining Event Interfaces

ever
e
the

ce

tion

ing
s or

PI.

ble
ts
Ware
m

ust

e

Extracting Metadata From the External System

If the external system exposes a native metadata API, you should use it when
possible to programmatically extract metadata from the external system. If th
system doesn’t expose an API, you’ll have to use another approach to getting
metadata. For example:

� If the external system is ORB based, it may expose a CORBA IFR (Interfa
Repository) object that you can use to query metadata.

� For an RDBMS based system, try extracting catalog information.

� For a mainframe based system, write a parser to extract metadata informa
from COBOL copy books.

Creating Metadata for BusinessWare

Developers can create metadata for BusinessWare in one of two ways: by us
the BusinessWare metadata API, or by generating an IDL/ODL file. (End-user
developers can also use the Console to create metadata; seeBusinessWare
Metadata Guidefor additional information.) Generating a file is easier to
implement and debug than using the BusinessWare metadata API, so Vitria
recommends that only advanced developers use BusinessWare metadata A

Implementing the Generator

You can implement the generator as a command-line program or as a plugga
BusinessWare UI component. If the generator uses pluggable UI componen
such as event panels, the generator can be launched from within the Business
Console. Otherwise, for stand-alone programs, the user must run the progra
from the command prompt or a Unix shell. SeeBusinessWare Programming
Referencefor additional information.

PROGRAMMING TECHNIQUES FOR WORKING WITH EVENTS

As mentioned throughout this guide, one of the major tasks a connector flow m
perform is constructing events from (or deconstructing an event into) its
constituent elements (as they exist outside of BusinessWare).

If stubs are available, you should use tryDispatch when receiving events (se
“Creating Stub Files” on page 69and“Event Handling (Target or Source-Target
Flow Only)” on page 50); theEBank Connector Sampleshows you how to use this
recommended approach.
71

ry)

in
ame
he
nt())

me_
class
rget
TheSimple Connector Sampleprovides an overview of two approaches for
sending an event by using methods from the JctLib (Java channel toolkit libra
class (com.vitria.jct.JctLib) and from the meta object library
(com.vitria.fc.meta.EventDef), as discussed briefly in the remainder of this
chapter.

Here’s the complete IDL for the SampleEvents interface (from theSimple
Connector Sample). This IDL file defines an event calleddateEvent that
comprises three IDL types—string , long , andlong long ; the equivalent Java
types areString , int , andlong , respectively.

module myEvents {

interface SampleEvents {
event void dateEvent(in string name, in long id, in long long date);

};

};

The listing below shows one approach to sending events of the type defined
myEvents.SampleEvents. An encoder is constructed by given an interface n
and the connector flow (“this”) ; it then returns an object that implements all t
event methods in that interface, calling these methods (for example, dataEve
automatically pushes the event:

...
private SampleEvents sampleEvents_;
...
public void init(SampleSourceDef def, FlowEnv env) {

super.init(def, env);
...

sampleEvents_ = (SampleEvents)(JctLib.encoder(this, "myEvents.SampleEvents"));
...
}
...

public void doWork() {
sampleEvents_.dateEvent(name_, id_, System.currentTimeMillis());

}
...

The listing above shows excerpts of the encoder being initialized in the init()
method with all the events defined inmyEvents.SampleEvents . This
encoder is then called in doWork to create a dateEvent with the parameters na
and id_; the current date is obtained using a method from the standard Java
library. Once the encoder creates the event, it automatically passes it to the ta
list of the connector.
72 BusinessWare Connector Programming Guide

Defining Event Interfaces

on of

rmat

n

ent.

d

sing
To create the event directly, you can pass the data and the metadata (definiti
the data) for the event to thecreateEventBody() method (in
com.vitria.jct.JctLib), as shown in the listing below.

...
private void sendEvent() {

Object[] params = new Object[3];
params[0] = name_;
params[1] = new Integer(id_);
params[2] = new Long(System.currentTimeMillis());

EventDef eDef = (EventDef)
(SampleEventsHelper.getMetaObject().findDef("dateEvent"));

EventBody eb = JctLib.createEventBody(eDef, params);

doPush(eb);
}
...

BusinessWare events are objects created from theEventBody class
(com.vitria.fc.flow.EventBody). Metadata is used to create an
EventBody; metadata can also be used to get an event’s specification in the fo
of a Java String.

In the listing above, an EventBodyeb is created by using the metadata stored i
theeDef variable; the data itself is stored in theparams variable (the array); the
variableeDef is anEventDef object containing metadata.

ThefindDef method, called on a meta object, returns the metadata for an ev
The meta object is obtained by calling thegetMetaObject method in the
SampleEventsHelper. (When you run this IDL file through the pre-
compiler (jstubgen), the result is four files, including
SampleEventsHelper.java , a helper class that is used for marshalling an
unmarshalling objects ofmyEvents.SampleEvents type.)

To use the EventDef object, you must import theEventDef class as follows:

import com.vitria.fc.meta.EventDef;

Here’s a summary of the steps involved with this approach:

� Create an object array that holds data to send in the event

� Create an EventDef to encapsulate the metadata about the object

� Use JctLib to wrap the data and metadata in an EventBody

Review theSimple Connector SampleandEBank Connector Samplefor complete
code listings and discussions of alternative ways of obtaining metadata and u
it to create or deconstruct events. Also seeBusinessWare Programming Guideand
BusinessWare Programming Reference.
73

74 BusinessWare Connector Programming Guide

8
 8WRITING A TRANSACTION RESOURCE
ow.

ils
udes

ns—

ing
,
r’s

ways
to

dels.
This chapter tells you how to create a transaction resource for a connector fl
In the first part of the chapter, you’ll find information about transactions and
programming strategies; in the second part of the chapter, you’ll find the deta
about how to write the actual code for a transaction resource. The chapter incl
the following topics:

� Overview of Transactions

� How the Transaction Service Processes Transactions

� Writing a Transaction Resource for a Flow

� Methods Available to Transaction Resources

Unless otherwise noted, all code listings in this chapter are excerpts from the
EBank Connector Sample.

OVERVIEW OF TRANSACTIONS

In simple terms, atransactionis alogical unit of work;it may encompass a single
task or several tasks, but as a logical unit, all tasks—whether one task or doze
must complete in their entirety, or none should complete at all.

For example, when a bank transfers funds from a savings account to a check
account, it must decrease the savings accountandincrease the checking account
or leave both accounts alone; otherwise, the banks books—and the custome
accounts—will be out of balance.

In a distributed computing environment, in which accounts (and resources in
general) reside on completely different systems, ensuring that transactions al
complete successfully is challenging for many reasons, but a solid approach
ensuring that they do is by using atransaction servicethat implements thetwo-
phase commit protocol.

As discussed in“Supporting Infrastructure” on page 9, Vitria provides such a
transaction service to manage transactions for connectors and connection mo
If you want to ensure that a transaction within any flow is managed by this
Transaction Service, you must create a transaction resource for the flow, as
detailed in this chapter.
75

e is
e
ecific
ls.)

ns

on

cross
h

urce
m at

e

he

em's
an
ends

e

THE TRANSACTION SERVICE

Each connection model has an associated Transaction Service that handles
transactions across all flows in the connection model; the Transaction Servic
necessary because the individual flows that comprise a connection model ar
unaware of each other. (Flows are reusable components, which means a sp
flow type may be configured and used differently in different connection mode

When a connection model is started, each flow that participates in transactio
creates an object called atransaction resourceand passes it to the Transaction
Service. Thus, the Transaction Service is aware of all the flows in a connecti
model that need to participate in transactions.

The Transaction Service for the connection model coordinates transactions a
the model; however, the responsibility for ensuring that data is saved lies wit
each connector’s transaction resource.

THE TRANSACTION RESOURCE

Every connector that participates in transactions must have a transaction reso
that calls the appropriate methods to handle transactions in the external syste
the direction of the transaction service.

The code you write for the transaction resource must include methods that th
transaction service invokes at runtime to instruct the resource to get ready to
commit (precommitResource or prepareToCommit, as shown inTable 8-2and
Table 8-3 on page 88), and to commit or abort the transaction, depending on t
outcome of the precommitResource or the prepareToCommit.

The Transaction Service relies on the transaction resource of each flow in a
connection model to implement the appropriate methods on the external syst
API to commit data or abort processing. However, the transaction resource c
only guarantee data to the extent that the API can guarantee it, and that dep
on whether the external system provides API for one-phase or a two-phase
commit protocol, as discussed in the next section.

ONE-PHASE AND TWO-PHASE COMMIT PROTOCOLS

As introduced in“Transaction Architecture” on page 11,the transaction service
associated with each connection model can support both one- and two-phas
transactions.
76 BusinessWare Connector Programming Guide

Writing a Transaction Resource

mit’
n the

d,

ction
e

you
ivery,

iated
ng
so,

ure,

g

he
tor
To recap:

� Two-phase transaction resources, which support a two-phase commit
protocol, can guarantee that a commit will succeed because of a ‘pre-com
stage. If an external resource is two-phase, the transaction service relies o
transaction resource to guarantee successful commits once a transaction
resource has successfully passed a “pre-commit” stage.

� One-phase transaction resources, which do not have a pre-commit metho
cannot guarantee that a commit will succeed. At most, a single one-phase
resource can participate in a transaction.

The two-phase approach is preferred because it can guarantee that a transa
will complete after a ‘pre-commit’ phase has been passed (discussed in mor
detail in the next section); it ensuresonce-and-only-oncedata delivery. If the
external system supports two-phase commit protocol, you should create a
transaction resource that implements the protocol.

If the external resource supports a one-phase protocol, there are techniques
can use to ensure once-and-only-once data delivery, or at-least-once data del
as discussed in“Robust One-Phase Transaction Resources” on page 80.

HOW THE TRANSACTION SERVICE PROCESSES TRANSACTIONS

As mentioned earlier, when the Flow Manager instantiates the flows in a
connection model at runtime, each flow that has a transaction resource assoc
with it adds the resource to the transaction service. The flows begin processi
events through the model in whatever manner they’ve been configured to do
and the transaction service does little until one of the flows signals a commit.

Given the nature of the underlying BusinessWare connection model architect
the source flow should initiate the commit: processing in the context of a
connection model traverses from flow to flow, and it’s only when the underlyin
push() returns to the source flow that processing (in the context of the entire
model) is complete; seeChapter 2, “Architecture Overview.”

A standard source flow includes a check on the value of thecommitAfter_
boolean; if set to “True” (by the end-user through the Console or
programmatically), the source flow calls commit on the transaction service. T
commitAfter_ is a member of the BaseConnector class, from which all connec
flows inherit basic characteristics; the default value is false.
77

lls it

ep.
d

r
tion

tory.

and
(See“Checking value of commitAfter_” on page 54for additional information
about including this call in a source connector flow.) The sequence of steps
involved with committing a transaction is as follows:

1. A source flow withcommitAfter_ property set to true callscommit()
on the Transaction Service.

2. The Transaction Service callsprepareToCommit() on the one-phase
transaction resource (if a one-phase resource exists in the model). This te
to get ready for a commit and determines whether a commit is likely to
succeed. IfprepareToCommit() returns the active transaction ID, a
commit will probably work, and the Transaction Service goes to the next st
If prepareToCommit() returns null, the Transaction Service gives up an
the transaction is aborted.

3. The Transaction Service callsprecommitResource() on all the two-
phase transaction resources. If any of two-phase resource returns null (o
doesn’t return anything) the Transaction Service gives up and the transac
is aborted.

4. The Transaction Service then stores all active transaction IDs in the reposi

5. The Transaction Service callscommitResource() on the one-phase
transaction resource. If an error occurs, the Transaction Service gives up
the transaction is aborted.

6. The Transaction Service callscommitResource() on all the two-phase
transaction resources and the commit is complete.

This process is summarized in the table below:

Table 8-1 Process Initiated when Source Flow with “commitAfter_” Set to
“True” calls commit on Transaction Service

Transaction Service Two-Phase Resource (n) One-Phase Resource (1)

1. Calls prepareToCommit() on
one-phase resource

2. Returns null or active transaction
ID

3. Stops if receives null, or
continues.

4. Calls preCommit() on all two-
phase resources

5(n) Each two-phase resource
returns an active transaction ID or a
null

6. Halts processing if any null
received (or no response);
otherwise, continues processing

7. Stores all active transaction IDs
78 BusinessWare Connector Programming Guide

Writing a Transaction Resource

tion

dles
ion
.

es
ces
tate

rce

e
-

vice
Failures can occur at any stage of processing, so another major role of the
transaction service is recovering from a system failure in the midst of a transac
and determining how to proceed, as discussed in the next section.

HOW THE TRANSACTION SERVICE HANDLES FAILURES

When there’s a system failure, the specifics of how the transaction service han
the recovery process will vary, depending upon whether the specific connect
model includes only two-phase resources, or includes a one-phase resource

� If only two-phase resources are involved, and if not all two-phase resourc
have pre-committed, the transaction service will let the transaction resour
simply time-out; the distributed resources will be returned to a consistent s
automatically.

� If a connection model includes a flow with a one-phase transaction resou
(in addition to two-phase resources), and the system crashes after the
prepareToCommit was called on the one-phase resource but before the
precommitResource had been called on the two-phase resources, then th
transaction service recovers by first calling getPrepareStatus (on the one
phase resource using the stored active transaction ID).

� If the one-phase resource returns COMMITTED, then the transaction
service can continue with the precommitResource on the two-phase
resources.

� If the getPrepareStatus returned PREPARED, then the transaction ser
will abort the transaction.

8. Calls commitResource() on one-
phase resource using its transaction
ID

9. Commits (returns true to
transaction service if successful)

10. If one-phase has committed
successfully, then calls
commitResource() on each two-
phase resources using their
respective transaction IDs

11(n) all commit

Table 8-1 Process Initiated when Source Flow with “commitAfter_” Set to
“True” calls commit on Transaction Service (Continued)
79

on
el.
ur
ould
ry, as

l
se
f the
you
port
ess
ique
on

or
tion
I for
In this way, the one-phase transaction resource and the two-phase transacti
resources can be involved in a transaction across the same connection mod
However, since one-phase resources do not guarantee that commits will occ
after the prepareToCommit method has been called, there techniques you sh
consider using in your one-phase transaction resources to ensure data delive
discussed in the next section.

ROBUST ONE-PHASE TRANSACTION RESOURCES

The two-phase commit protocol is the preferred way to handle transactions
because it guarantees once-and-only-once data delivery. But not all externa
systems support the two-phase commit protocol. If you must write a one-pha
resource, you can ensure once-and-only once data delivery by using some o
techniques discussed below (if the external API provides a transaction ID or
can add data in the context of a transaction). If the external system doesn’t sup
a transaction ID or other marker, or let you add data in the context of an in-proc
transaction, you can still ensure at-least-once data delivery by using the techn
described in“One-Phase Transaction Resources without Status Information”
page 83.

ONE-PHASE RESOURCES THAT IMPLEMENT STATUS

INFORMATION

If the resource provides a transaction ID, you should use the transaction ID (
some other identifier as part of its commit protocol), you can use this transac
ID to ensure once-and-only-once data delivery. For example, the external AP
theEBank Connector Samplesupports one-phase transactions and provides an
xid, as shown below:

...

public EBankServer() {

accounts_ = new Hashtable();

xids_ = new Hashtable();

xidCounter_ = 0;

...

private synchronized int nextXID(){

xidCounter_++;

return xidCounter_;

}

...

// transactions

public int prepare(){
80 BusinessWare Connector Programming Guide

Writing a Transaction Resource

.

code
a

n
re).
int xid = nextXID();

xids_.put(new Integer(xid), commands_);

commands_ = new ArrayList();

return xid;

}

public boolean committed(int xid) {

Object transaction = xids_.get(new Integer(xid));

if (transaction == null){

return true;

}

else {

return false;

}

}

public EBankServerModule.Result commit(int xid){

// all or none - here we go

List l = (L ist) xids_.get(new Integer(xid));

if (l == null){

return EBankServerModule.Result.UNKNOWN_TRANSACTION;

}
...

As the listing above shows, the EBank server exposesprepare() ,
commit(), andcommitted() API, which include anxid parameter; this xid
is used in the EBank transaction resource (as shown in the next code listing)

The transaction resource returns a byte array that corresponds to the xid (the
that converts the xid into and out of this array is not shown below). To signal
failure, the transaction resource returns null. It provides valuable information
about the status of the current transaction, and will be used by the transactio
service to perform the actual commit (or abort the transaction if there’s a failu

Here’s an excerpt showing the transaction ID being passed as part of the
prepareToCommit logic from theEBank Connector Sample.

public byte[] prepareToCommit(){
if (logLevel_ >= DiagLogger.VERBOSE){

ConnectorMessages.logPrepareToCommit(logger_,
EBankTargetConnectorMessages.baseid);

}
ByteArrayOutputStream baos;

try {
// call prepare on the ebank connection and grab the xid

EBankConnection conn = connector_.getConnection();
int xid = conn.prepare();

...
81

rce’s
or

D

e) for
s the
catch(Exception iox) {
if (logLevel_ >= DiagLogger.ERROR){

EBankTargetConnectorMessages.logErrorPreparing(logger_, iox);
}

return null;
// convert byte array back to xid
...

...

When the transaction service callsprepareToCommit on the transaction
resource, the transaction resource calls the external API (prepare) on the
EBank connection. When the Transaction Service calls this transaction resou
commitResource() method, the transaction is committed. (See the code f
the transaction resource (ETargetResource.java or EBankTarget.cxx
andEBankTarget.hxx) from EBank Connector Samplefor complete details.)

TheEBank Connector Sampletransaction resource also uses this transaction I
to determine if a COMMIT actually did succeed or not, as shown in the next
excerpt. The getPrepareStatus method gets called (by the transaction servic
purposes of determining the status of the last transaction; the method passe
byte[] that was returned in prepareToCommit (some of the conversion and
logging code is not shown).

public int getPrepareStatus(byte[] id){

if (logLevel_ >= DiagLogger.VERBOSE){

ConnectorMessages.logGetPrepareStatus(logger_,
EBankTargetConnectorMessages.baseid);

}

// convert the byte array back into an xid

...

if (logLevel_ >= DiagLogger.TRIVIA){

...

try {

EBankConnection conn = connector_.getConnection();

// get the status of the xid

if (conn.committed(xid)){

// we committed the last transaction successfully

out = OnePhaseResource.COMMITTED;

}

else {

// we did not commit the last transaction successfully

out = OnePhaseResource.PREPARED;

}

}
...
82 BusinessWare Connector Programming Guide

Writing a Transaction Resource

ay
l
ed in

a
for

s the

ll

and

age.
us

ussed
ext
If the external API doesn’t provide this level of support for transactions, you m
still be able to ensure robust once-and-only-once data delivery if the externa
system lets you add data in the context of the current transaction, as discuss
the next section.

No Transaction ID API in External System

If the external API doesn’t provide a transaction ID or other status flag in the
context of a commit method, but the external system lets you add data within
transaction, you may still be able to ensure once-and-only-once data delivery
a one-phase resource. For example, Vitria’s RDBMS source connector store
database transaction ID in aCONNECTORCOMMITStable, as part of the
transaction that’s in-process.

If a system crash occurs during the commit, the Transaction Service calls the
transaction resource’sgetPrepareStatus() method during recovery. The
Transaction Service checks for the piece of data saved in the
prepareToCommit() and if the data exists, the Transaction Service knows
that the transaction committed—if it hadn’t the data wouldn’t exist, because a
the work in a transaction succeeds or fails.

If the data doesn’t exist, the transaction service knows the transaction failed,
the event is processed again.

ONE-PHASE TRANSACTION RESOURCES WITHOUT STATUS

INFORMATION

If the external API doesn’t provide a transaction ID and you cannot add data
concurrent with an in-process transaction, you won’t be able to determine if a
commit succeeded or not in the event of a system crash during the commit st
In such cases, you can code your one-phase resources to return default stat
values, as follows:

� Always return COMMITTED for a source connector flow

� Always return PREPARED for a target connector flow

These guidelines ensure that you’ll provideat-least-oncedata delivery for flows
that have one-phase resources (which are unable to use the techniques disc
in the previous section). The rationale for this approach is discussed in the n
sub-section.
83

a

the

tion;

the

d and
eives
he
t’s

,

rget

s

rnal
a
tem

ut
ce
Transaction Service and getPrepareStatus()

Between the time the Transaction Service issues a commit() and the time all
resources actually commit, there’s always the possibility of a system failure.
When the system restarts, the transaction service callsgetPrepareStatus()
method on the one-phase resource in the model for which it was processing
transaction. ThegetPrepareStatus() method returns only one of two
values—COMMITTED or PREPARED—and the transaction service takes its
next step based on this information.

� If the transaction service receives aCOMMITTEDfrom a resource, it assumes
the data (event) was committed successfully, and it continues processing
current transaction; the event is not dropped.

� If the transaction service receivesPREPAREDfrom a transaction resource, it
assumes that the commit did not succeed and it aborts the current transac
drops the event; and attempts to re-process the transaction again.

In the case of a source connector flow, which picks up data from an external
system and sends data in event form into the model, returning PREPARED if
commit completed can result in data loss if the commit actually succeeded
because when a commit completes, the data in the external system is delete
the event containing the data is dropped. So when the transaction service rec
a PREPARED and it aborts the current transaction and attempts to process t
transaction again, the data is no longer available on the external system. Tha
why you must return COMMITTED for a source flow; if the commit really failed
the data still exists and will simply be re-processed.

The opposite is true of a target connector flow, which receives events either
directly (or indirectly, through other flows in a model) from a BusinessWare
channel and ultimately inserts them into an external system. In the case of a ta
connector flow, you should always return PREPARED. When you return
COMMITTED for a target flow, the transaction service assumes the event ha
traversed the connection model succesfully, so it notifies the channel server,
which then delivers the next event in the list.

If the commit had in fact failed, however, and the data wasn’t saved to the exte
system, then the event is gone. That’s why you must return PREPARED for
target flow; if the commit had succeeded, the data is saved in the external sys
and event will be re-processed, possibly resulting in a duplication of data—b
again, data loss is anathema to a transaction processing system: at-least-on
delivery is preferred over data loss.
84 BusinessWare Connector Programming Guide

Writing a Transaction Resource

the

s for
that
ier in

with

s

and

s()

es
ction
e flow
WRITING A TRANSACTION RESOURCE FOR A FLOW

To create a transaction resource for a connector flow, you must first analyze
external system’s API and determine if it supports transactions; if it does, you
must next determine if the transactions are one-phase or two-phase. With an
understanding of the external transaction API, you can then write a Java clas
the transaction resource (or a C++ class, if your connector flow is C++ based)
implements the transaction logic, using one of the approaches discussed earl
this chapter.

Once you have the transaction resource written, you’ll associate the resource
the flow by making the appropriate call in your Flow source’s initialization
section (seeChapter 5, “Writing Java Connectors”or Chapter 6, “Writing C++
Connectors”for additional details about writing code for the Flow.) These task
are detailed in the next two sections.

WRITE THE TRANSACTION RESOURCE

The transaction resource is a runtime object that gets instantiated by the flow
then passed to the BusinessWare transaction service.

Code for the transaction resource includes calls that implement the external
system’s transaction API, that is, calls to commit or abort transactions. The
connection to the external system is made in the flow itself (in the startEvent
method), and this connection is passed to the transaction resource in the
constructor, as you’ll see in the code below.

Import Transaction APIs

Here’s a step-through of the Java version of the transaction resource for theEBank
Connector Sample; this transaction resource is added to the transaction servic
from the Java target flow. The code starts with the package name (your transa
resource should be part of the same package as the def, rep, BeanInfo, and th
itself). The code begins with these standard imports:

import com.vitria.fc.trans.*;
import com.vitria.fc.io.*;
import com.vitria.fc.data.*;
import com.vitria.fc.diag.*;
import java.io.*;

Next, the API of the external system is imported; in addition, this transaction
resource takes full advantage of the EMT Framework, so those classes are
imported as well:

import EBankAPI.*;
import ebanklocale.*;
85

this

phase

e
he
code
nk

once
import com.vitria.msg.ConnectorMessages;

The external API supports only a one-phase commit, so the class implements
interface, as shown in the code below. Also note the calls to the logger in this
listing. (See“Methods Available to Transaction Resources” on page 87for
discussion and comparison of the one-phase resource methods and the two-
methods.)

public class ETargetResource implements OnePhaseResource{
private DiagLogger logger_; // for logging
private int logLevel_; // for logging

Connect to the External System

Some external systems, such as databases, implement transactions within th
context of a connection, in which case the transaction resource must share t
connector’s current connection to the external system; this is the case in the
below (theconnector_ variable is used to access the connection to the EBa
server).

...
private EBankJavaTarget connector_;
...

public ETargetResource(DiagLogger l, int logLevel,
public byte[] prepareToCommit(){

if (logLevel_ >= DiagLogger.VERBOSE){
ConnectorMessages.logPrepareToCommit(logger_,

EBankTargetConnectorMessages.baseid);
}

ByteArrayOutputStream baos;

try {
// call prepare on the ebank connection and grab the xid

EBankConnection conn = connector_.getConnection();
int xid = conn.prepare();

if (logLevel_ >= DiagLogger.TRIVIA){
EBankTargetConnectorMessages.logXID(logger_, xid);

}
...

SeeEBank Connector Sampleto review the full code listing for the transaction
resource. Again, the majority of the code in any transaction resource will be
specific to the external transactional API and how commits and aborts are
handled. See“Robust One-Phase Transaction Resources” on page 80for
information about ensuring that one-phase resources provide once-and-only-
data delivery, or, if need be, at-least-once data delivery.
86 BusinessWare Connector Programming Guide

Writing a Transaction Resource

you

in
INITIALIZING THE TRANSACTION RESOURCE IN THE FLOW

To add a transaction resource for your connector to the Transaction Service,
must make a call in theinit() method in your flow code, as shown in this
excerpt from EBankJavaTarget.java, theEBank Connector Sample:

. . .

public void init(EBankJavaTargetDef d, FlowEnv env){

super.init(d, env);

iorFile_ = d.getIorFile();

ETargetResource res = new ETargetResource(logger_,
logLevel_, this);

ConnUtil.addResource(res, service_);

}

. . .

SeeChapter 5, “Writing Java Connectors”(or Chapter 6, “Writing C++
Connectors”) for more information about referencing the transaction resource
the code for your flow.

METHODS AVAILABLE TO TRANSACTION RESOURCES

Methods to use for a Java transaction resource (from the
com.vitria.fc.trans package) are shown in the two tables below.

Table 8-2 One-phase Methods

Method Description
prepareToCommit() Returns transaction ID

commitResource() Commits the transaction

abortResource() Kills the transaction

getPrepareStatus() Returns a COMMITTED flag if the
transaction has committed and returns
a PREPARED flag if the transaction
has not yet committed
87

e
rance

ful
Note that although the one-phaseprepareToCommit() method and the two-
phaseprecommitResource() method return the current transaction ID to th
transaction service, these methods do not provide an equal measure of assu
that the transaction will complete after these respective calls are made. By
definition, a two-phase commit API provides a guarantee that after a success
precommitResource, the commit calls will succeed, even in spite of a system
failure. If the external system provides a two-phase commit protocol, then it
provides this guarantee.

Table 8-3 Two-phase Methods

Method Description
precommitResource() Returns transaction ID and prepares

the system for a commit

commitResource() Confirms the transaction

abortResource() Kills the transaction
88 BusinessWare Connector Programming Guide

9
 9HANDLING ERRORS
cted
ors;

ity
s the
to

he
Your connector flow must include code to handle erroneous data and unexpe
situations. This chapter provides information about how to log and handle err
topics include:

� Sending Error Messages to the Log File

� Log Levels

SENDING ERROR MESSAGES TO THE LOG FILE

All connector flows inherit from the BaseConnector class, which provides util
methods for logging and exception handling; BaseConnector class implement
DiagLogger interface. DiagLogger contains a set of six log levels, from NONE
TRIVIA, as discussed in the next section.

LOG LEVELS

The DiagLogger interface (imported in the BaseConnector) provides the
following constants to decide how much information gets written to the log. T
log level is a given property; end-users can set the log level for a flow on its
property sheet (in the Console):

Table 9-1 Log Levels

Log Level Description

NONE (0) Perform no tracing at all under any circumstances.

ERROR (1) Log serious errors and exceptions.

WARNING (2) Log warnings and other questionable situations.

NORMAL (3) Log major occurrences, such as startup and administrative
changes (not event-based). Adds little or no performance overhead
and should produce little output if the application is well designed.

VERBOSE (4) Log every system occurrence, typically pre-transition or per-
event. Adds some performance overhead.

TRIVIA (5) Log all available information. Can negatively affect
performance (by adding to overhead). Restrict use to debugging.
89

e to

ck,

ds on

ide

for

ger
stem
).

rror
In the code you write, you can check the log level before writing out a messag
the log or elsewhere. For example, the following statement ensures that only
actual errors (in the application) or Java exceptions trigger whatever follows,
specifically, the message writing.

if (logLevel >= DiagLogger.ERROR) ...

On the other hand, a logLevel >= DiagLogger.TRIVIA would capture an
extensive amount of information, potentially causing a performance bottlene
(depending on the context of the rest of code in which it’s embedded).

The actual text of the messages that get generated by these log levels depen
what you provide; see“Using the EMT Framework for Log Messages” on
page 92). The logLevel constants provide an arbitrary range that you must prov
for in your own connector by creating the appropriate message text.

LOGGER_

The BaseConnector also provides alogger_ object; use this object to send error
and informational messages to the log file. Your code should include a check
the log level setting (of the connector at runtime, since end-users of your
connector can alter this in the Console), as shown in the excerpt below:

...
public void startEvents(){
if (logLevel_ >= DiagLogger.ERROR){

ConnectorMessages.logStarting(logger_, EBankSourceConnectorMessages.baseid,
name_);

}
...

Within theif statement in the listing above, a message will be sent to the log
when the connector flow is started and attempts to connect to the external sy
(the EBank server); the log will identify where the error occurred (logStarting

Your code must import the DiagLogger interface as follows:

import com.vitria.fc.diag.DiagLogger;

The next code listing includes the entire startEvents method, with additional e
checking and logging code:

...
if (logLevel_ >= DiagLogger.ERROR){

ConnectorMessages.logStarting(logger_, EBankSourceConnectorMessages.baseid,
name_);

}

try {
90 BusinessWare Connector Programming Guide

Handling Errors

ow.
s a
ges;
connection_ = new EBankConnection(new File(iorFile_));
}
// STANDARD throw DiagError in startevents when encountering a failure
catch (Exception e){

Diagnostic d =
CommonEBankConnectorMessages.createErrorConnecting(EBankSourceConnectorMessages.
baseid);

logger_.write(d);

// wrap the diagnostic in a DiagError and throw it
throw new DiagError(d);

}
...

Here’s the comparable code from the C++ version of the source connector fl
In this listing, you see that the FlowBridge API (the C++ wrapper that enable
C++ flow to cross the C++/Java boundary) is used to write out the log messa
for example,flowbridge_logmessage(VTTRACE_ERROR, this,
diag) andflowbridge_logmessage(VTTRACE_ERROR, this, diag)

...
void EBankSource::startEvents(_Ix_Env& _env) {

VTDiagnostic* diag;
diag = ConnectorMessages::createStarting(EBankSourceConnectorMessages::baseid,

"EBankSource");
flowbridge_logmessage(VTTRACE_ERROR, this, diag);

// try connecting
if (!connection_->connect()){

// could not connect!
diag =

CommonEBankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid);

flowbridge_logmessage(VTTRACE_ERROR, this, diag);

// set exception so we don't start up
VTDiagError * err = VTDiagError::create(__FILE__, __LINE__,

CommonEBankConnectorMessages::createErrorConnecting(EBankSourceConnectorMessages
::baseid));

_env.exception(err);

return;
}

...

This is just a short example. Review the code listings for both C++ and Java
connector flows inEBank Connector Samplefor more details about how to use
these call in your own code.

See“C++ API Summary” on page 5for all FlowBridge methods.
91

og

tion
also

, by
k

le,
ime),

w

pe
cal

the
USING THE EMT FRAMEWORK FOR LOG MESSAGES

The EMT (Error, Messaging, and Tracing) framework is provided in
BusinessWare to handled messages of all types, including error, trace, and l
messages (“The EMT (Error/Messaging/Tracing) Framework” on page 8for
additional background information).

The EMT Framework enables fast and easy localization and internationaliza
because it provides a complete infrastructure for generating text messages; it
provides the underlying facilities for handling all these messages in your code
means of a “resource bundle,” which includes C++ stubs (that provide the lin
between between your text and BusinessWare), Java, C++, or both

The resource bundle is specific to any BusinessWare application, including
connectors. Developers writing custom connectors must create a resource fi
generate the stubs and database of message text (which will be used at runt
and generate C++ header files or Java class files (or both, if you’re creating a
connector flow that will have both types of flows). In the source code for the flo
Rep you then load the resource bundle as explained in“Load the Locale Bundle
for the EMT Framework” on page 34.

During the development process, you’ll likely want to simply use placeholder ty
messages, and develop the actual resource bundle when all the other techni
issues are complete. For final code, you should use the EMT Framework. See
BusinessWare Programming Guidefor more information.
92 BusinessWare Connector Programming Guide

10
 10MISCELLANEOUS DEVELOPMENT ISSUES
a
ntial

into
mat

lt-in
r,

the

he
h as
e are
or
This chapter discusses:

� Customizing Methods

� Multi-threaded Subscriber

� Request-reply (Synchronous) Processing

CUSTOMIZING METHODS

In most connection models, events sent by the flow source or received from
channel are not in the appropriate format. For example, ISAM (indexed seque
access method) file data isn’t structured as events, and must be transformed
events usable by BusinessWare. Transformer flows modify events into the for
needed. BusinessWare provides several standard transformer methods; see
BusinessWare Connection Modeling Guidefor information.

Developers can also write custom transformer methods for several of the bui
source-target flows, specifically, the Simple Data Transformer, Simple Route
Nested Router, and Multi-threaded Subscriber, as discussed in this section.

Before writing a custom transformer method, you must define:

� Event interfaces that the transformer method will handle

� Action to be taken for both expected and unexpected events

� Data to be returned after event processing.

Your code can return a single event; an array of events; or null (in which case
event is dropped).

WRITING THE METHOD IN THE JAVA CODE EDITOR

You can write the code by using the Java Code Editor, which is a feature of t
BusinessWare Console. The advantage of using this editor is that issues suc
class names, classpaths, saving, compiling, and registering in the namespac
taken care of for you—you write the method body only in the Java Code Edit
dialog box.
93

ple

ing

.

o

ode
rts,

m’s

thod

e as
The method takes an EventBody as a parameter. If the method is part of a Sim
Data Transformer, it returns another EventBody, otherwise it does not.

Clicking the Register button in the Java Code Editor compiles the class contain
the method and registers the class in BusinessWare. The new class will be
displayed in the Simple Data Transformer’s Processing tab (via the Console)

See theBusinessWare Connection Modeling Guidefor details about using the
Java Code Editor. Review the next section to gain an understanding of how t
write the custom method.

WRITING THE CODE MANUALLY

To write the code externally—outside the BusinessWare Console and Java C
Editor—you must write a traditional Java class file, with package name, impo
and the like.

After you have written and tested your code, you can register it with
BusinessWare, as discussed in“Registering Custom Methods”, below. (As with
other Java class files for flows, you must put the transformer class in the syste
CLASSPATH for Java classes.)

The next several sub-sections step through the process of writing a custom me
for the Simple Data Transformer.

CUSTOMIZING METHODS FOR THE SIMPLE TRANSFORMER

For the Simple Transformer, the class must have these imports:

com.vitria.fc.data.*;

com.vitria.fc.io.*;

com.vitria.fc.flow.*;

com.vitria.fc.diag.*;

com.vitria.msg.*;

com.vitria.fc.meta.*;

com.vitria.fc.record.*;

com.vitria.jct.JctLib;

com.vitria.connectors.datalators.simpletranslator.*;

The four method signatures you can use for a custom transformer method ar
follows:

� myMethod(EventBody e)

� myMethod(EventBody e, String [] s)
94 BusinessWare Connector Programming Guide

Miscellaneous Development Issues

ods
lass
� myMethod(EventBody e, String [] s,
SimpleTranslatorInterface sti)

� myMethod(EventBody e, SimpleTranslatorInterface sti)

Each of these can return either an EventBody or an EventBody array. If the
returned EventBody reference is null, the event is dropped.

Writing the Custom Class

You can create custom transformer classes that contain any number of meth
that perform different data transformations. Placing multiple methods in one c
groups them all in one file and separates the transformation logic from the
connector flow code.

To facilitate re-use, group multiple translator methods in their own class.

Here’s a walk-through of a transformer class (from theSimple Connector Sample)
that has two methods; one convertsdateEvents to stringEvents , the other
convertsstringEvents to dateEvents .

The following IDL code defines adateEvent :

module myEvents {
interface SampleEvents {

event void dateEvent(in string name, in long id, in longlong date);
};
};

The following IDL code defines astringEvent :

module vtEvents {
interface stringEventInterface {

event void stringEvent(in string data);
};
};

The following code is in theMyDataTranslator class described in theSimple
Connector Sample:

public EventBody dateToString(EventBody e) {
if (e.getEventSpec().equals(dateSpec_)) {

Object[] p = e.getParameters();
return JctLib.createEventBody(

stringEvent_, new Object[]{ p[0] + “,” + p[1] + “,” + p[2] }
);

}
return null;

}

public EventBody stringToDate(EventBody e) {
95

le

tered

ered

ply
tor
”

r

nd
if (e.getEventSpec().equals(stringSpec_)) {
Object[] p = e.getParameters();
String inString = (String)(p[0]);
StringTokenizer st = new StringTokenizer(inString, “,”);
if (st.countTokens() == 3) {

String s1 = st.nextToken();
String s2 = st.nextToken();
String s3 = st.nextToken();
return JctLib.createEventBody(

dateEvent_,
new Object[]{ s1, new Integer(s2), new Long(s3) }

);
}

}
return null;

}

Registering Custom Methods

Transformer classes and methods are displayed in the BusinessWare Conso
when the Simple Data Transformer flow is configured. In order for the custom
transformer class to be displayed along with its list of available methods, the
transformer class must be registered.

Custom methods created using the Java Code Editor are automatically regis
during the compile stage; see theBusinessWare Connection Modeling Guidefor
details.

Custom methods created manually, using the JDK or and IDE, must be regist
in BusinessWare in one of three ways:

� From an .ini file.

� If you create the .ini by using the Connector Generator Tool, simply sup
the transformer class name in the .gen file (or in the Connector Genera
Wizard GUI. See“Using the Connector Generator Tool and the .gen File
on page 42for details.

� If you write a Java program to generate the .ini, call
addTranslatorLib() with the name of the transformer class and
method settings. See“Adding a Transformer Class” on page 104for
details.

� From a command line, using the TransReg utility. Briefly, you simply ente
transreg -a JavaClassName1... at the command prompt. The
batch file (or .csh, in Unix) launches the Java SimpleTransReg program a
registers the transformer. (SeeBusinessWare Programming Referencefor
details about using this command-line utility)
96 BusinessWare Connector Programming Guide

Miscellaneous Development Issues

so

in a

get
ed in

d in

d on
vent
ong

pers

d

� From the BusinesWare Console, by entering in the class name on the
Processing Panel. See theBusinessWare Connection Modeling Guidefor
details.

In addition to registering the transformer class in BusinessWare, you must al
make sure the class files are located in the CLASSPATH of the machine

To use an externally-developed custom transformer method that is specified
call toaddTranslatorLib() in a Java program, as seen in the previous
section, perform the following steps:

1. Compile the Java file containing the transformer class and method.

2. Place the resulting class files in the CLASSPATH.

Displaying Event Lists

A transformer flow is a source-target flow, and as with the source flows and tar
flows, the event types that a transformer can send and receive can be display
the Console.

types of events that a transformer flow can send and receive can be displaye
the Console. The list of events that the transformer can send is thesource list; the
events it can receive are thetarget list.

See“Creating the Java components for the Flow” in Chapter 4for details about
implementing getSourceEventInterfaceList (to display a source list) and
getTargetEventInterfaceList() to display a target list.

CUSTOMIZING SIMPLE ROUTER METHODS

The SimpleRouter is a source-target flow that enables routing of events base
type or actual content. Simple Router has a list of potential targets; when an e
is received by the router, a user-defined method receives the EventBody ald
with a vector of possible targets and user-configurable parameters.

The router returns a vector with a subset of targets to which it can route; the
SimpleRouter can route based on type (of event) or based on content. Develo
can use the Java Code Editor to modify routing methods; seeBusinessWare
Connection Modeling Guidefor additional details about using Simple Router an
about using the Java Code Editor.
97

ted
ut it
ext
use

uter
.

this
a
el

l and
rget.

y
size

els.
eue

the
CUSTOMIZING NESTEDROUTER

The Nested Router encompasses features of both a simple router and a nes
model; that is, it receives events that it can route based on type or content, b
routes to other models (rather than specific flows or channels). If, in the cont
of a connection model, you need to direct output to multiple models, you can
the Nested Router flow.

Use Nested Router when you need to route to numerous multiple flows or
channels. Nested Router has a “folder” property; when you place a nested ro
in a model, you specify the folder in which Nested Router will look for models

For example, you could create a folder called /users/accounting and specify
as the folder property for a specific Nested Router. You can then use the Jav
Code Editor (in the Console) to write your own code to define the target mod
(for the router); the method takes in an EventBody and returns the name of a
string. For example:

String out = "VITR";

would route all events to model called VITR in folder /users/accounting.

Usage rules for Nested Router are the same as for the Nested Model; see
BusinessWare Connection Modeling Guidefor complete details.

MULTI-THREADED SUBSCRIBER

The Channel Flow source is a single instance source: it subscribes to a channe
receives events, processing them one at a time, sending each event to its ta

The Multi-threaded Subscriber establishes a series of queues that are used b
multple instances of a connection model to read events from the channel. The
of the queue is set by the users as is the number of instances.

The Multi-threaded Subscriber is used in multi-instance target connection mod
The Multi-threaded Subscriber uses a (key) map class to determine which qu
is read. The default class is round robin as follows

// Always return a java.lang.Integer

Object iKey = new
Integer((int)e.getPosition()%concurrencyLevel());

You can override this method to implement your own processing order, using
Java Code Editor. (SeeBusinessWare Connection Modeling Guidefor additional
information about configuring multi-instancing.)
98 BusinessWare Connector Programming Guide

Miscellaneous Development Issues

ut,
d all

el
ce
tion
he

n
on’t
’re

ned

t gets

e
le.)
Ware

an
Multi-instance Connection Models

The typical connection model runs as a single instance. To improve throughp
end-users can configure connection models to run multiple instances, provide
flows in the model are multi-instance-enabled.

Several BusinessWare flows, such as the Multi-threaded Subscriber, Chann
Target, Simple Data Transformer, RDBMS, and HTTP flows, are multi-instan
enabled; end-users can combine these flows as needed into specific connec
models and configure the number of instances that they’d like (by changing t
concurrent instances property under Model Properties).

Not all flows can easily be multi-instanced. In addition, all flows in a connectio
model must be multi-instance enabled (otherwise, the createFlowManager w
return true and the connection model won’t be multi-instanced after all). If you
wiring together multi-instance-enabled flows into a connection model or
connection model template, be sure that all flows are multi-instanced.

REQUEST-REPLY (SYNCHRONOUS) PROCESSING

As mentioned throughout this guide, once an event exists in the context of a
specific connection model, it is “pushed” from flow to flow by an underlying
BusinessWare mechanism. The originating flow waits for the push to be retur
before it concludes its processing loop.

When a connector flow picks up data from a channel and creates an event tha
pushed from the source flow, the communication style between channel and
source flow is asynchronous.

As an alternative, you can implement a request/reply (synchronous) using th
request/reply API. (BusinessWare HTTP connector has implemented this sty
See the Request/Reply Sample in the connectors samples folder in Business
for additional information.

Impact on Using SimpleTranslatorInterface in a Connection Model

For example, typically when a simple translator returns an EventBody, the
EventBody is pushed (usually to the next flow for processing). If you want to
return the EventBody as a result (instead of pushing it to the next flow), you c
use the markIsResponse(true) mthod, and the event will be returned to the
requestor (instead of being pushed).
99

tyle
s

rite

me
Use public EventBody[] execute(EventBody e) method to use request-reply s
invocation on the flow that follows the Simple Translator. That flow will proces
the event and return an array of event bodies. This method enables you to w
code in the SimpleTranslator that takes an event and performs multiple
invocations on the subsequent flow before returning a result. To specifically na
the flow on which multiple invocations should occur, use public EventBody[]
executeAt(String flowName, EventBody e), where flowName is a valid flow in
the connection model.

See“Simple Translator Interface” on page 5for listing of all methods in this
interface.
100 BusinessWare Connector Programming Guide

11
 11INSTALLING CONNECTORS AND

CONNECTION MODELS
nd

at
l
and

es

in

that:

is
This chapter discusses several tasks associated with installing connectors a
connection model templates. This chapter includes these topics:

� Creating the Initialization (.ini) File

� Installing a Connector

CREATING THE INITIALIZATION (.INI) FILE

Before you can install a connector, you must create an initialization file (.ini) th
loads and registers various components—connector flows, connection mode
templates, and transformers, for example—into the BusinessWare repository
makes them available through the Console. A connector’s initialization (.ini)
file contains information about the connector’s name, its rep, and default valu
for its properties.

At a minimum, an initialization file (.ini) is needed to register a connector flow
the BusinessWare repository and install a flow into the Flow Palette on the
BusinessWare Console. In addition, developers can create initialization files

� add connection model templates to the Console

� register transformer methods

� import and register IDL into the BusinessWare repository

You can accomplish these tasks by using the command-line tools listed in th
table:

See theBusinessWare Programming Referencefor information about using these
tools.

Task Command-line Tool

Add connection model templates to the
Connection Model menu in the Console

ConnUtil

Register transformer methods TransReg

Import and register IDL into the repository importidl
101

ard
the

w,

y

e

and
You can write a Java program that will create the initialization file for you (as
described in“Creating an .ini File From a Java Program”below), or you can use
the Connector Generator tool, as described in the next sub-section.

GENERATING AN .INI FILE BY USING CONNECTOR GENERATOR

The Connector Generator Tool creates a default.ini file for a connector based
on properties in the .gen file. You can generate the .ini file using either the wiz
version of the Connector Generator or the command-line version, but to use
command-line version, an .gen file must already exist. See“Using the Connector
Generator Tool and the .gen File” on page 42for additional information about
using the command line tool.

Do not modify the .ini file after it’s been generated. Add the name of the
initialization file (without the .ini) to the vtInstalled.cfg file, then run the
loaditems script (if the BusinessWare installation has already been up and
running). See“Installing a Connector” on page 108for additional information
about installation.

The generator tool can automatically generate the .ini file for the connector flo
but if you want to create an .ini file that includes a connection model or a
connection model template, you must write a Java class that uses several ke
BusinessWare classes and methods, as described in the next section.

CREATING AN . INI FILE FROM A JAVA PROGRAM

Developers can create.ini files by writing a Java program that generates the
file specifically for their connector. This section steps through two files from th
Simple Connector Sample—SampleLib.java andSampleIni.java .
When compiled and run, theSampleIni.class generates an .ini file (shown
in the screenshot), which loads the connector, connection model templates,
the transformer into the Flow Registry:
102 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

n the

Flow
You can adapt these two Java files as needed for your connector and any
connection model templates and transformers.

NOTE: Use the fully-qualified package names for the connector code (rather
than the non-qualified names shown in these code listings).

Step-through of the SampleIni.java Code

TheSampleIni.java code begins with these imports:

import com.vitria.install.ConnectorLib;
import com.vitria.bclient.ConnectorDef;
import com.vitria.bclient.ConnectorRep;
import com.vitria.fc.io.ExportException;
import java.io.IOException;

Next is the name of the class, followed by themain() method; themain()
method calls thenewSampleConnector method, which provides the code for
the bulk of the work of initializing (loading and registering) the connector
components.

public class SampleIni {
public static void main(String[] args) throws ExportException, IOException {

ConnectorDef cDef=newSampleConnector("SampleConnector“SampleConnector.ini”“);
ConnectorLib.exportItem(cDef, “SampleConnector.ini”);
System.out.println(“Generated ConnectorDef for Sample”);

}
public static ConnectorDef newSampleConnector(String type) {

ConnectorRep rep = new ConnectorRep();
rep.init();
rep.setClassName(ConnectorLib.className);
rep.setMethodName(ConnectorLib.methodName);
rep.setConnectorType(type);

As shown above, thenewSampleConnector method starts by setting the class
name, method, and type for the connector. The next few sub-sections focus o
other tasks that thenewSampleConnector method accomplishes.

Adding the Flow Type to the Import and Export Registry

These next two statements add export tags for the two new connectors to the
Registry:

// add the flow types to the import registry
rep.addFlowType(SampleLib.SOURCE_EXPORT_TAG,

“SampleLib”,
“createSampleSourceDef”);

rep.addFlowType(SampleLib.TARGET_EXPORT_TAG,
“SampleLib”,
103

le on

ata.

e

t

“createSampleTargetDef”);

Adding Connection Model Templates

These next two statements make the two connection model templates availab
the Connection Models menu of the Console:

rep.addConnectionTemplateItem(“Sample to Channel”,
“SampleLib”,
“createSampleSourceToChannel”);

rep.addConnectionTemplateItem(“Channel To Sample”,
“SampleLib”,
“createChannelToSampleTarget”);

(Note that you’ll still need to wire together the connection model itself. That’s
done in theSampleLib.java file, as described in“Step-through of the
SampleLib.java Code” on page 105.)

Adding a Transformer Class

This statement adds a new transformer class to the registry:

rep.addTranslatorLib(“MyDataTranslator”);

All the methods in MyDataTranslator will be available from the connection
model.

Registering IDL Files

The next statement registers the IDL in the repository, creating editable metad

// register the IDL in the repository
rep.addTypeToRegister(“../../interdef/SampleEvents.idl”);
return rep;
}

The interface definition language file that this section of code refers to must b
located in theinterdef directory in the BusinessWare installation.

This concludes the code for thenewSampleConnector method in the
SampleIni.java file. The remainder of the code in this chapter is from
SampleLib.java of theSimple Connector Sample; the code in SampleLib
will be used to embed the necessary information in the .ini file to create the
connection model (“Channel to Sample”) template with the associated even
logger and transformer class.
104 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

ly
e
nce

nd-

.

Step-through of the SampleLib.java Code

TheSampleLib.java file starts with the list of imports for the API classes
and declares the classname:

import com.vitria.bclient.BClientLib;
import com.vitria.bclient.FlowManagerDef;
import com.vitria.fc.io.ImportStream;
import com.vitria.jct.EventLoggerDef;
import com.vitria.bfolder.ContextFolder;
import com.vitria.jct.JctLib;
import com.vitria.jct.SubscriberDef;
import com.vitria.jct.PublisherDef;
import com.vitria.connectors.common.ConnUtil;
import com.vitria.connectors.common.ConnectorLib;
import com.vitria.connectors.datalators.simpletranslator.SimpleTranslatorDef;
import com.vitria.connectors.datalators.simpletranslator.SimpleTranslatorLib;
public class SampleLib {

Defining Export Tags for Connectors

The .ini must create definitions for the export tag for the connector, to unique
identify it in the Flow Registry. This code listing handles the export tags for th
source and target connector for the Simple Connector; it also provides refere
to the create methods that will provide a new Rep in the Console, when an e
user begins creating a connection model:

public static final String SOURCE_EXPORT_TAG =
“com/myCompany/myFlows/SampleSourceDef:1.0”;

public static final String TARGET_EXPORT_TAG =
“com/myCompany/myFlows/SampleTargetDef:1.0”;

public static SampleSourceDef createSampleSourceDef(ImportStream s) {
return createSampleSourceDef();

}
public static SampleSourceDef createSampleSourceDef() {

SampleSourceRep ssd = new SampleSourceRep();
ssd.init();
return ssd;

}
public static SampleTargetDef createSampleTargetDef(ImportStream s) {

return createSampleTargetDef();
}

public static SampleTargetDef createSampleTargetDef() {
SampleTargetRep std = new SampleTargetRep();
std.init();
return std;

}

You can use the ending characters of the export tags (the “1.0” in
...SampleSourceDef:1.0 above) to differentiate versions of the connector
The duplication of thecreateSampleTargetDef method is for compatibility
with previous versions of BusinessWare.
105

tes

el”

low
her.
urce
the

es

ts,

at
e
e will
the

ou
a

The next few code excerpts are highlights from the
createConnectorSubscriberDef method in SampleLib.java. This method crea
the connection model for a channel source to the Sample flow.

(SampleLib.java also contains a method () for the “Sample flow to the chann
connection model, not shown in the listings in this section; seeSimple Connector
Samplefor complete information).

In simple terms, the method has several tasks, including creating the target f
def, the transformer, the event logger flow, and wiring all these elements toget
The first line is the method signature; the second line creates the channel so
def, which will be the source of events for the connection model template that
.ini file will ultimately load into the BusinessWare Console:

public static FlowManagerDef createChannelToSampleModel(){
SubscriberDef channel = JctLib.createSubscriberDef();

Creating and Adding Transformer Classes and Methods

If you want the connection model to include transformation methods, you can
have the .ini file add the Simple Data Transformer flow and set the initial valu
for the class name and method. This section of theSampleLib.java code adds
a transformer flow to the target list of the flows from which it is to receive even
and adds to the transformer's target list the flows to which it will send events:

// === create translation flow ===
SimpleTranslatorDef transformer = SimpleTranslatorLib.createSimpleTranslatorDef();
// initial transformer configuration
transformer.setClassName(“MyDataTransformer”);
transformer.setMethodName(“dateToIDLString”);

In the code above, createSimpleTranslatorDef() creates the standard Simple
Transformer flow; transformer.setClassName() sets the name of the class th
contains the transformer method; and transformer.setMethodName() sets th
name of the transformer method to be used. The class name and method nam
be the default values, which can be changed by the user of the connector in
Console.

NOTE: Use the fully-qualified package names for the connector code (rather
than the non-qualified names shown in these code listings). For example, if y
have amySpecial connector with a stringToSpecial transformer() method in
class named MySpecialTransformer, all of which are members of a package
namedmyspecial , the last two lines in the listing above would appear as
follows:

transformer.setClassName(“myspecial.MySpecialTransformer”);
transformer.setMethodName(“stringToSpecial”);
106 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

s,

nd
ava
For information about creating your own custom transformer methods, see
“Customizing Methods” on page 93.)

Creating and Initializing the Def

The following code creates and initializes the sample target connector def:

SampleTargetDef std = createSampleTargetDef();

The following code wires all three defs together:

FlowManagerDef flowManager = BClientLib.createFlowManagerDef();
channel.getTargetList().append(translator);
translator.getTargetList().append(std);
flowManager.getSourceList().append(channel);

Notice in the previous line that the flowManager maintains a list of source flow
so that this connection model can have many source flows.

Creating the StopOn Flow

The code below creates and initializes the StopOn flow for the error model, a
connects it to the Logger. To create the StopOn flow, add these lines to the J
file generating the connection model’s.ini file:

Adding the StopOn Flow to the Logger Target List

The code below creates and initializes a StopOn flow for the error model and
connects it to the Logger:

SimpleTranslatorDef logTranslator =
SimpleTranslatorLib.createStopOnTranslatorDef();

logTranslator.setName("StopOn_Sample");

Next, thecreateChannelToSampleModel concludes by returning a Flow
Manager object, the creation of which was the primary goal of this method:

return flowManager;
}

Finally, this next method calls thecreateChannelToSampleModel method
above to create a flow manager:

public static void createChannelToSampleTarget(ContextFolder folder)
throws com.vitria.fc.folder.UnresolvedException,

com.vitria.fc.folder.NoPermissionException,
107

ple
flow

le

n the
the

a
nd
ese
.

com.vitria.fc.io.ExportException,
com.vitria.fc.folder.OperationException

{
FlowManagerDef flowManager = createChannelToSampleModel();

// === bind the new flowmanager into the name space ===
ConnUtil.newConnectionModel(folder, flowManager, “New Channel To Sample”);

}

Ultimately, when a business user selects the “New Channel To Sample”
connection model from the menu on the Console, the createChannelToSam
model is called, the flow manager creates the defs, reps, and instantiates the
and wires it all together according to the specifications in the .ini file, and the
template displays in the Connection Model on the Console.

INSTALLING A CONNECTOR

BusinessWare components, including connectors, can be installed on a sing
machine or across multiple machines, in client/server (distributed) fashion.
Specifically, you can install and use the Console on one machine and have
BusinessWare installed and running on a server located elsewhere, over a
network.

In either case, the .class files that comprise the connector must be installed o
client machine where the Console is running. The next two sections discuss
files and how to install them in either a client/server or stand-alone server
configuration.

CONNECTOR FILES

As discussed throughout this guide, particularly inChapter 4, “Creating Java
Components for a Connector Flow,”a connector flow is comprised of several Jav
.class files that enable business analysts or other end-users to manipulate a
configure it (as a flow) in the context of a connection model in the Console. Th
include specifically .class files for the def, the rep, the BeanInfo, and the flow
108 BusinessWare Connector Programming Guide

Installing Connectors and Connection Models

e

es

w is

r
ne,

t
s

ries

X,
The connector flow also includes code for the transaction resource, if the
transaction service will manage transactions for this flow. This summary tabl
shows the naming standard, in whichnameis the connector name and type is the
typeof flow (source, target, or source-target) as well as the specific classnam
that comprise theEBank Connector Sampletarget flow:

Note that when the Connector Generator Tool is used to generate files, the flo
implemented as two files, a base and a flow file.

All these .class files for the connector must be in theCLASSPATHon the machine
where BusinessWare server is installed; if you’ve implemented a client/serve
environment, you must also install these in the classpath on the client machi
where the Console is installed and running.

In addition, the files for any custom transformer classes implemented in your
connection model must also be in theCLASSPATH.

� On Windows NT, C++ connectors also have C++.dll files that must be in
the PATH.

� On UNIX systems, C++ connectors also have C++ shared library (.so) files
which must be in the shared library path.

You can install the files for a connector flow by following the steps in the nex
section. In addition to the .class files, you’ll need an initialization (.ini) script, a
discussed in“Creating an .ini File From a Java Program,”to load and register the
metadata and other objects in the BusinessWare repository.

Installing a Connector

All .class files for the connector must be located in the appropriate sub-directo
on both the client machine and server (for a client/server (distributed)
BusinessWare installation), or just on the server machine (for a stand-alone
BusinessWare installation). The sub-directory will be specfic to win32 or UNI
depending upon the platform on which BusinessWare is installed.

Naming Standard EBank Java Target Flow

Def nameTypeDef EBankJavaTargetDef.class

Rep nameTypeRep EBankJavaTargetRep.class

BeanInfo nameTypeRepBeanInfo EBankJavaTargetRepBeanInfo.class

Flow nameTypeFlow EBankJavaTarget.class

[BaseFlow] nameTypeFlowBase na [EBankJavaTargetBase.class]

Transaction Resource nameTypeResource EBankJavaTargetResource.class
109

eir

ts

all

e

an

are
Developers should create an InstallShield (for Windows platform) or
InstallAnywhere (for Unix) application to handle these installation tasks for th
connector users.

In the steps below, replaceplatformwith win32 or UNIX as necessary for your
install. To install a connector:

1. Copy all connector .class files—the def, rep, BeanInfo, and the flow—to
%VITRIA%\java\ platform , whereplatform is eitherwin32 or UNIX.
This places them in theCLASSPATH.

� For a C++-based flow, also copy the.dll (or on UNIX, the shared library
(.so) file) for the connector to %VITRIA%\bin\ platform; this places
these files into the PATH (or shared library path).

2. Copy the connector’s.ini file to %VITRIA%\data\install .

3. Add the name of the.ini file (without the.ini extension) to the end of the
file vtInstalled.cfg . The default location ofvtInstalled.cfg is
%VITRIA%\data\install.

4. Run theloaditems script (also located by default in
%VITRIA%\data\install . When you execute the script, the
BusinessWare server must be running. Theloaditems script reads the
vtInstalled.cfg file and loads the matching .ini file. If the .ini file is
found, and it is dated later than the last time loaditems was run, the objec
created by the .ini are loaded into BusinessWare.

5. Open the Console and verify that the connector is displayed in the Flow
palette; if the connector doesn’t display in the Flow Palette:

� Re-start the Console to force the JVM (Java virtual machine) to reload
byte code that comprise the Console).

� Double-check the classpath and make sure that all .class files are in th
right sub-directory under the %VITRIA% installation.

6. Test the connector by either creating a new connection model or importing
existing model, and then using the connector in the model. This typically
requires configuring the connector flow, saving and registering the
configuration, starting the connection model and testing the results.

If you’re running the Console on a client machine rather than on the BusinessW
server, simply copy the connector’s class files to a directory in theCLASSPATH
on the machine on which the Console is running. By default, the classpath is
%VITRIA \java\ platform, whereplatform is eitherwin32 or UNIX.
110 BusinessWare Connector Programming Guide

A
 AREFERENCE
re
e

he

es
n’t
ve
The classes and interfaces you’ll use to develop Connectors for BusinessWa
belong to just a handful of Java packages and C++ include files. You’ll find th
C++ files in the \include sub-directory of the BusinessWare installation.

For Java development, you should have BusinessWare installed on your
development machine and make sure that CLASSPATH is set according to t
installation instructions. Vitria recommends using Sun’s Java JDK (Java
Development Kit) compiler, release 1.2.2. The command line compiler requir
fewer resources than many of the IDEs on the market. In addition, Vitria does
provide the source code for the Java API, and some IDEs require that you ha
source code in order to write new applications.

Java API Summary

SeeBusinessWare Programming Referencefor additional information.

Table A-1 com.vitria.connectors.BaseConnector

Method Description

init() Initializes state. This method must be called before
the flow is started.

public
ConnectorBaseDef
getDef(){return def_;}

Returns the def associated with this flow

public void
startEvents()

Called by the FlowManager when the connection
model is started. Flows that perform startup work
must override this method and call
super.startEvents() after they have finished their
startup work and before returning.

public void stopEvents(){ Called by the FlowManager when the connection
model is stopped. Flows that perform shutdown work
must override this method and call
super.stopEvents() before doing shutdown work and
before returning.
A-1

with
Table A-2 com.vitria.fc.flow.FlowEnv

These are the methods that you must implement in the Rep to communicate
the repository.

Table A-5 com.vitria.fc.trans.Resource

Method Function

int getInstanceCount() Returns the total number of instances inside this
connection model (multi-instance support).

int getInstanceIndex() Returns the instance index that this flow env is
running inside the connection model (multi-instance
support).

Table A-3 com.vitria.fc.io.Exportable

void exportTo(com.vitria.fc.io.ExportStream
stream) throws com.vitria.fc.io.ExportException

Export the object to the given
stream.

void importFrom(com.vitria.fc.io.ImportStream
stream) throws com.vitria.fc.io.ImportException

Import the object from the
given stream.

getExportFormat() Return the tag that defines the
format of the object in the
stream

Table A-4 com.vitria.fc.trans.OnePhaseResource

Method Function

prepareToCommit() Returns the ID of the active transaction (one-
phase transaction resources only).

commitResource() Commits the transaction.

abortResource() Kills the transaction

getPrepareStatus() Returns a flag showing whether the active
transaction has been committed yet (one-phase
transaction resources only)

Method Function

precommitResource() Prepares the system for a commit (two-phase
transaction resources only)
A-2 BusinessWare Connector Programming Guide

Reference

t as a

ener
out
Request/Response API

Includes the ResponseListener interface (public extends Subscriber) and the
ResponseListenerLib class. A ResponseListener is an object that can be sen
parameter of a request event, and then used to wait for a response event.
ResponseListener objects are not persistent. Events sent to a ResponseList
that no longer exists will be lost. See Request/Reply Sample for information ab
how to use.

Table A-7 com.vitria.connectors.request.ResponseListenerLib

commitResource() Commits the transaction.

abortResource() Kills the transaction

Method Function

Table A-6 com.vitria.connectors.request.ResponseListener

public EventBody
awaitResponse(long
timeout);

Parameter timeout is the maximum number of
milliseconds to wait for a response. Returns the
response event (if it was received), or null if the
timeout period expired.

public void cancel(); Stops listening for response events because the
request event is cancelled.

Method Description

public static
ResponseListener
createResponseListener()

Create a ResponseListener; the default logger will be
used for diagnostic messages.

public static
ResponseListener
createResponseListener(D
iagLogger log)

Create a ResponseListener. The log will be used for
diagnostic messages.

public static
ResponseListener
createResponseListener(D
iagLogger log, int
logLevel)

Create a ResponseListener. The log and log level will
be used for diagnostic messages.
A-3

cel()

be
After creating a ResponseListener, always call either awaitResponse() or can
on the ResponseListener.

Parameters:

� log The logger to use for logging messages. If null, the default logger will
used.

� logLevel The log level to use for logging messages.

public static
ResponseListener
createResponseListener(D
iagLogger log, int
logLevel)

Create a ResponseListener. The log and log level will
be used for diagnostic messages.

public static void
respond(Subscriber
subscriber, EventBody
response, DiagLogger log)

Send the response event to the ResponseListener.
The subscriber is the ResponseListener that was sent
in the request event.

Method Description
A-4 BusinessWare Connector Programming Guide

Reference
C++ API Summary

Simple Translator Interface

Use methods from theSimpleTranslatorInterface to get information
about the environment through theFlowEnv , and to log error and trace
messages. The complete SimpleTranslatorInterface is as follows:

package com.vitria.connectors.datalators.simpletranslator;

import com.vitria.fc.diag.DiagLogger;
import com.vitria.fc.flow.FlowEnv;

Table 0-1 FlowBridge (fbutil.hxx)

void flowbridge_commit(vtFlow::Flow* flow); Deprecated; C++ flows should not call commit. (This
method calls commit on the connection model. If commit
after is set, the JavaFlow will call commit automatically.)

void flowbridge_abort(vtFlow::Flow* flow); Abort the transaction on the entire connection model. Note,
this only set a flag that abort should occur. When flow
returns * to the Java processing environment, an abort will
be issued to the transaction service.

void flowbridge_logmessage(vtCORBA::Long iLevel,
vtFlow::Flow* flow,char* component, char*
message);

Log a string message to the logger.Use this during
development process only. This method is kept for
compatibility--all new code should use diagnostic variant to
log internationalized message. iLevel specifies a log level
that is checked before logging actually occurs.

void flowbridge_logevent(vtCORBA::Long major,
vtCORBA::Long minor, char* message,
vtFlow::Flow* flow);

Log a string message with major and minor code to the
logger. * Note this method is kept for compatibility, use the
internalized version instead.

void flowbridge_logmessage(vtCORBA::Long iLevel,
vtFlow::Flow* flow, VTDiagnostic* diagMsg);

Log an internationalized diagnostic message to the logger.

void flowbridge_logerror(vtCORBA::Long iLevel,
vtFlow::Flow* flow, VTDiagError* diagError);

Log an internationalized diagnostic message to the logger.
iLevel specifies a log level that is checked before logging
actually occurs.

void flowbridge_logeventbody(vtCORBA::Long
major, vtCORBA::Long minor, char* message,
vtFlow::EventBody* e, vtFlow::Flow* flow);

Log an message with an eventbody to the event logger.
major major code minor minor code message string
message describing event e the original event body that
error occured on

void flowbridge_stopAllFlows(vtFlow::Flow* flow,
char* message);

Stop all the flows in the connection model. Note this is not
synchronous call, a thread is spawned which will issue the
stop call. flow the C++ flow param message a string
message describing why the flow is stopping.
A-5

tion
import com.vitria.fc.flow.EventBody;

public interface SimpleTranslatorInterface {
public DiagLogger getLogger();
public FlowEnv getFlowEnv();
public void log(String message, int level);
public void log(String message);
public void logException(Exception e, int level);
public void logException(Exception e);
public int getLogLevel();
public void sendToTarget(EventBody evt);
public void markIsResponse(boolean b);
public EventBody[] execute(EventBody e);
public EventBody[] executeAt(String flowName, EventBody
e);

}

Here’s an example of using the SimpleTranslatorInterface to to obtain informa
from the FlowEnv and to log messages:

public static EventBody RDBToString(EventBody evtIn, String[] separator,
SimpleTranslatorInterface sti)

{
// just send epoch events on (although this use of indexOf is not complete)
if (evtIn.getEventSpec().indexOf("epoch") > 0)

return evtIn;
Logger logger = sti.getLogger();
EventDef evtDef = evtIn.getEventDef();
List paramDefs = evtDef.getParameterList();
Object[] inParams = evtIn.getParameters();
String outstring = new String();
for (int i = 0; i < inParams.length; i++) {

int kind = ((ParameterDef)paramDefs.elementAt(i)).getType().kind();
outstring = outstring + inParams[i] + separator[0];
if (logger.getTraceLevel() >= diagLogger.VERBOSE)
logger.trace(diagLogger.VERBOSE,"Para m " + i + " = " + inParams[i] + "

type = " + kind);
}
EventDef e =

(EventDef)(BasicEventsHelper.getMetaObject().findDef("stringEvent"));
Object objs[] = new Object[1];
objs[0] = outstring;
EventBody ebOut = JctLib.createEventBody(e, objs);
return ebOut;

}

A-6 BusinessWare Connector Programming Guide

GLOSSARY
er
that

lso
ctor
nce,
tor

te

ve
ria-

m,
erts

to

e

ce
at
Channel: A structure in BusinessWare that holds events.

Channel source: Aflow that receives events from a channel.

Channel target: A flow that sends events to a channel.

Connection model: A collection of flows and support programs that send data
between end points (which may be channels or external systems).

Connector: A flow that connects an external system with BusinessWare, eith
converting external system data to BusinessWare events or vice versa. (Note
not only are connector flows usually referred to simply as “connectors,” but a
that what is referred to as a “connector” sometimes comprises a suite of conne
flows, transformers, channel and source target flows, and templates. For insta
the “File Connector” includes not just the File Source and File Target connec
flows, but also several pre-wired templates.)

Container server: The underlying software infrastructure required to instantia
an object.

Event: A generic data-exchange format that contains a block of bytes that ha
meaning within the context of a specific BusinessWare implementation. A Vit
specific keyword added to CORBA IDL as implemented in BusinessWare.

External system- the data repository (such as a database management syste
file system, or message queue) that your connector extracts data from or ins
data into.

Flow: A component that can receive events, do processing, and send events
other flows. Flows can be linked or “wired” together to construct a connection
model that defines a runtime process that interacts with an external system.

Interface: In the context of CORBA, an interface is an object that describes th
set of services (operations) that a CORBA server offers to a client. A CORBA
interface is defined using the OMG (Object Management Group) IDL (interfa
definition language). Similarly, in Java an interface is a list of the methods th
can be used by a client application.

Module: A structure that defines a namespace for a set of interfaces.
G-1

Glossary

l

d
s) an
).

nal

of
d or

del

ut
erm
Source connector:A connector that creates events from data from an externa
system.

Source-target flow:A flow that both sends and receives events; typically referre
to as a transformer because a source-target flow usually translates (tranform
event of one type into an event of another type (on the output side of the flow
The RDBMS Connector is the only source-target flow that is not considered a
transformer.

Target connector:A connector that receives events and interacts with an exter
system.

Transaction: A logical unit of work that has ACID (atomicity, consistency,
integrity, durability) properties after being processed. In simple terms, a group
events that must not be divided: that the events need to either be all delivere
none of them be delivered.

Transaction resource: Acomponent of each flow in a connection model that
handles the code related to transactions in the external system, including
committing or aborting the transaction.

Transaction service:A component of BusinessWare that ensures that all the
events that participate in a particular transaction pass through the connection
model safely if the transaction is committed, pass through the connection mo
without being committed, or do not pass through the connection model if the
transaction is aborted.

Transformer: A source-target flow whose output event is different than the inp
event it receives. (In the API, the term “translator” is used; this guide uses the t
translator only when explicitly referring to the API.)
G-2 BusinessWare Connector Programming Guide

INDEX
A
abortResource 87, 88, A-2

B
BeanInfo 15, 39

C
C++ connector 40, 55
C++ wrapper 55
channel source 1
channel target 1
ChannelFlow 2
com.vitria.connectors.common 26, 27
com.vitria.connectors.generator.ConnectorWizard 38
com.vitria.fc.io.Exportable 29
commit 54, 78
commit after 78
commitResource 87, 88, A-2
connection model 2, 1
connector 1, 2, 9, 1
connector generator 37
CONNECTORCOMMITS table 83
ConnectorSourceDef 26
ConnectorSourceRep 27
ConnectorSourceTargetDef 26
ConnectorSourceTargetRep 28
ConnectorTargetDef 26
ConnectorTargetRep 28
ConnUtil 101
container server 1
CORBA 65, 71
createEventBody 73
createFlow 32
createFlowSource 32
createFlowTarget 32

D
def 15
development strategies 80
display name 39
doPush 13

E
event 1
EventBody 73
EventDef 73
events 1
export tag 105
Exportable 29
external system 17, 2
external system API 17

F
File Source 4
File Target 4
flow 2, 9
flow file 15, 45
FlowDef 32
FlowEnv 33
FlowSourceDef 32
FlowTargetDef 32

G
getPrepareStatus 87, A-2
getSourceEventInterfaceList 31, 97
getTargetEventInterfaceList 31, 97

H
help text 39

I
importIdl 69, 101
init 87
interdef directory 104
interface 1

L
loaditems 110
log level 89

M
metadata 65, 73
module 1
Multi-threaded subscriber 2

O
one and two-phase commit 76
one and two-phase transaction resources 77
one-phase transaction resources 80
ORB 66

P
package 39
Index-1

Index
Persistence 8
precommitResource 88, A-2
prepareToCommit 87, A-2

R
RDBMS source connector 83
RDBMS target connector 4
rep 15, 27
resolver 32

S
SAP 70
setClassName 106
setMethodName 106
Simple Data Transformer 4, 106
SimpleTranslatorInterface A-5
source connector 1, 2
source list 31, 97
source-target connector 1
source-target flow 2
Spreadsheet Transformer 4
startEvents 16
stopEvents 16
StopOn 107

T
target connector 1, 2
target list 31, 97
transaction 2
transaction resource 12, 76, 2
transaction service 76, 2
transformer 2
transformers 1
translator 2
TransReg 96
transReg 101
tryDispatch 51

V
Vantive source connector 19
vtInstalled.cfg 110
Index-2
 BusinessWare Connector Programming Guide

	Table of Contents
	Preface
	Audience
	Related Reading
	BusinessWare Documentation Set
	How This Guide Is Organized
	Conventions
	Contacting Vitria
	Headquarters
	Technical Support
	Documentation

	Introduction to Connectors
	BusinessWare Connectors
	Connectors as a Type of Flow
	Connection Models
	Connectors Bundled with BusinessWare
	Packaged Connectors
	Custom Connectors

	Next Steps

	Architecture Overview
	BusinessWare Basics
	Metadata Repository
	The EMT (Error/Messaging/Tracing) Framework

	Supporting Infrastructure
	Error Model (Error Graph)
	Transaction Architecture
	Flow Management

	Development Architecture

	Design and Development Guidelines
	Design Considerations
	Connector Design Guidelines
	Naming standards and UI Conventions
	Event Names
	File Names
	Module Names

	Getting Started
	Development Platform Setup
	Checklist For Developing a Connector

	Creating Java Components for a Connector Flow
	Creating the Java components for the Flow
	Step 1: Write the Flow Def
	Step 2: Write the Flow Rep
	Extend the Appropriate Connector Class
	Implement the get and set Methods
	Enable Properties to be Stored in the Repository
	Provide Lists of Event Interfaces
	Instantiate the Flow
	Multi-instance Flows
	Load the Locale Bundle for the EMT Framework

	Step 3: Write the BeanInfo
	Java File Summary

	Simplified Development using the Connector Generator
	How to Use the Connector Generator Tool (Wizard)
	Using the Connector Generator Tool and the .gen File

	Writing Java Connectors
	Introduction to Java Connector Flows
	Writing Code for a Java Connector
	Initialize the Connector Flow
	Start and Stop Processing in the Flow
	Code that Sends and Receives Events
	Event Handling (Target or Source-Target Flow Only)
	Event Handling (Source or Source-Target Flow)

	Checking value of commitAfter_

	Writing C++ Connectors
	Introduction to C++ Connector Flows and Flowbridge
	How the C++ Wrapper Works

	Implementing a Flow in C++
	Create the Java Components
	Call the Wrapper in the Java Code for the Rep
	Write a C++ Function that Gets called by the Wrapper
	Write the Code for the C++ Flow
	Code that Sends and Receives Events

	Defining Event Interfaces
	Overview of Events and Metadata
	Overview of IDL and ODL
	Creating Definition Files that Describe Metadata
	Naming Conventions and Guidelines

	Creating Stub Files
	Registering and Using Metadata
	Providing an IDL (or ODL) Generator with Custom Connectors
	Creating a User Interface Tool for the IDL/ODL Generator
	Mapping External Datatypes to IDL (or ODL)
	Extracting Metadata From the External System
	Creating Metadata for BusinessWare
	Implementing the Generator

	Programming Techniques for Working with Events

	Writing a Transaction Resource
	Overview of Transactions
	The Transaction Service
	The Transaction Resource
	One-phase and Two-Phase Commit Protocols

	How the Transaction Service Processes Transactions
	How the Transaction Service Handles Failures

	Robust One-Phase Transaction Resources
	One-Phase Resources that Implement Status Information
	No Transaction ID API in External System

	One-Phase Transaction Resources without Status Information
	Transaction Service and getPrepareStatus()

	Writing a Transaction Resource for a Flow
	Write the Transaction Resource
	Import Transaction APIs
	Connect to the External System

	Initializing the Transaction Resource in the Flow

	Methods Available to Transaction Resources

	Handling Errors
	Sending Error Messages to the Log File
	Log Levels
	logger_

	Using the EMT Framework for Log Messages

	Miscellaneous Development Issues
	Customizing Methods
	Writing the Method in the Java Code Editor
	Writing the Code Manually
	Customizing Methods for the Simple Transformer
	Writing the Custom Class
	Registering Custom Methods
	Displaying Event Lists

	Customizing Simple Router Methods
	Customizing NestedRouter
	Multi-threaded Subscriber
	Multi-instance Connection Models

	Request-reply (Synchronous) Processing
	Impact on Using SimpleTranslatorInterface in a Connection Model

	Installing Connectors and Connection Models
	Creating the Initialization (.ini) File
	Generating an .ini File By Using Connector Generator
	Creating an .ini File From a Java Program
	Step-through of the SampleIni.java Code
	Step-through of the SampleLib.java Code

	Installing a Connector
	Connector Files
	Installing a Connector

	Reference
	Java API Summary
	Request/Response API

	C++ API Summary
	Simple Translator Interface

	Index

